如图,一次函数y1=kx+n(k≠0)与二次函数y2=ax2+bx+c(a≠0)的图象相交于A(-1,5)、B(9,2)两点,则关于x的不等式kx+n≥ax2+bx+
答案:2 悬赏:80 手机版
解决时间 2021-12-21 23:39
- 提问者网友:疯孩纸
- 2021-12-21 13:14
如图,一次函数y1=kx+n(k≠0)与二次函数y2=ax2+bx+c(a≠0)的图象相交于A(-1,5)、B(9,2)两点,则关于x的不等式kx+n≥ax2+bx+c的解集为A.-1≤x≤9B.-1≤x<9C.-1<x≤9D.x≤-1或x≥9
最佳答案
- 五星知识达人网友:末日狂欢
- 2021-12-21 13:42
A解析分析:先观察图象确定抛物线y2=ax2+bx+c(a≠0)和一次函数y1=kx+n(k≠0)的交点的横坐标,即可求出y1≥y2时,x的取值范围.解答:由图形可以看出:抛物线y2=ax2+bx+c(a≠0)和一次函数y1=kx+n(k≠0)的交点的横坐标分别为-1,9,当y1≥y2时,x的取值范围正好在两交点之内,即-1≤x≤9.故选A.点评:本题考查了二次函数与不等式(组),此类题可采用“数形结合”的思想进行解答,这也是速解习题常用的方法.
全部回答
- 1楼网友:几近狂妄
- 2021-12-21 15:02
谢谢解答
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯