如图,已知⊙O1和⊙O2相交于A、B两点,直线CD、EF过点B交⊙O1于点C、E,交⊙O2于点D、F.
(1)求证:△ACD∽△AEF;
(2)若AB⊥CD,且在△AEF中,AF、AE、EF的长分别为3、4、5,求证:AC是⊙O2的切线.
如图,已知⊙O1和⊙O2相交于A、B两点,直线CD、EF过点B交⊙O1于点C、E,交⊙O2于点D、F.(1)求证:△ACD∽△AEF;(2)若AB⊥CD,且在△AEF
答案:2 悬赏:80 手机版
解决时间 2021-02-10 04:14
- 提问者网友:相思似海深
- 2021-02-09 22:52
最佳答案
- 五星知识达人网友:佘樂
- 2019-03-11 00:50
证明:(1)∵在⊙O1中,∠C=∠E,
∵∠D=∠F,
∴△ACD∽△AEF;
(2)∵AB⊥CD,即∠ABD=90°,
∴AD是⊙O2的直径,
∵在△AEF中,AF2+AE2=32+42=52=EF2,
∴∠EAF=90°,
由(1)得△ACD∽△AEF,
∴∠CAD=∠EAF=90°,
∴AC⊥AD,
又∵AD是⊙O2的直径,
∴AC是⊙O2的切线.解析分析:(1)两角对应相等可以判定△ACD∽△AEF.
(2)由勾股定理得出∠EAF=90°,证明AC是⊙O2的切线,AC⊥AD是关键,通过△ACD∽△AEF得以证明.点评:本题考查了相似三角形的判定和性质及切线的判定的综合运用.
∵∠D=∠F,
∴△ACD∽△AEF;
(2)∵AB⊥CD,即∠ABD=90°,
∴AD是⊙O2的直径,
∵在△AEF中,AF2+AE2=32+42=52=EF2,
∴∠EAF=90°,
由(1)得△ACD∽△AEF,
∴∠CAD=∠EAF=90°,
∴AC⊥AD,
又∵AD是⊙O2的直径,
∴AC是⊙O2的切线.解析分析:(1)两角对应相等可以判定△ACD∽△AEF.
(2)由勾股定理得出∠EAF=90°,证明AC是⊙O2的切线,AC⊥AD是关键,通过△ACD∽△AEF得以证明.点评:本题考查了相似三角形的判定和性质及切线的判定的综合运用.
全部回答
- 1楼网友:封刀令
- 2019-11-14 17:15
我也是这个答案
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯