如图,在⊙O中,AB为直径,AC为弦,过点C作CD⊥AB于点D,将△ACD沿AC翻折,点D落在点E处,AE交⊙O于点F,连接OC、FC.
(1)求证:CE是⊙O的切线.
(2)若FC∥AB,求证:四边形AOCF是菱形.
如图,在⊙O中,AB为直径,AC为弦,过点C作CD⊥AB于点D,将△ACD沿AC翻折,点D落在点E处,AE交⊙O于点F,连接OC、FC.(1)求证:CE是⊙O的切线.
答案:2 悬赏:60 手机版
解决时间 2021-12-26 03:56
- 提问者网友:一抹荒凉废墟
- 2021-12-25 18:15
最佳答案
- 五星知识达人网友:夜风逐马
- 2021-12-25 19:45
(1)证明:由翻折可知∠FAC=∠OAC,∠E=∠ADC=90°,
∵OA=OC,
∴∠OAC=∠OCA,
∴∠FAC=∠OCA,
∴OC∥AE
∴∠OCE=90°,
即OC⊥CE,
∵OC是⊙O的半径
∴CE是⊙O的切线;
(2)证明:∵FC∥AB,OC∥AF,
∴四边形AOCF是平行四边形,
∵OA=OC,
∴平行四边形AOCF是菱形.解析分析:(1)由翻折的性质可知∠FAC=∠OAC,∠E=∠ADC=90°,然后根据OA=OC得到∠OAC=∠OCA,从而得到OC∥AE,得到∠OCE=90°,从而判定切线.(2)利用FC∥AB,OC∥AF判定四边形AOCF是平行四边形,根据OA=OC,利用邻边相等的平行四边形是菱形判定□AOCF是菱形.点评:本题考查了切线的判定、菱形的判定及翻折变换的性质,利用翻折变换的性质得到∠FAC=∠OAC,∠E=∠ADC=90°是解决此类问题的关键.
∵OA=OC,
∴∠OAC=∠OCA,
∴∠FAC=∠OCA,
∴OC∥AE
∴∠OCE=90°,
即OC⊥CE,
∵OC是⊙O的半径
∴CE是⊙O的切线;
(2)证明:∵FC∥AB,OC∥AF,
∴四边形AOCF是平行四边形,
∵OA=OC,
∴平行四边形AOCF是菱形.解析分析:(1)由翻折的性质可知∠FAC=∠OAC,∠E=∠ADC=90°,然后根据OA=OC得到∠OAC=∠OCA,从而得到OC∥AE,得到∠OCE=90°,从而判定切线.(2)利用FC∥AB,OC∥AF判定四边形AOCF是平行四边形,根据OA=OC,利用邻边相等的平行四边形是菱形判定□AOCF是菱形.点评:本题考查了切线的判定、菱形的判定及翻折变换的性质,利用翻折变换的性质得到∠FAC=∠OAC,∠E=∠ADC=90°是解决此类问题的关键.
全部回答
- 1楼网友:佘樂
- 2021-12-25 21:21
这下我知道了
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯