已知两定点F1(-根号2,0)F2(根号2,0),动点P满足条件PF2的长-PF1的长=2,点P的轨迹是
已知两定点F1(-根号2,0)F2(根号2,0),动点P满足条件PF2的长-PF1的长=2,点P的轨迹是曲线E.直线l:y=kx-1与曲线E交于A,B两点,如果AB的长=6根号3 若曲线E上存在点C,是向量OA+向量OB=m向量OC,求实数m的值
2.已知N(根号5,0),P是圆M:(x+根号5)^2+y^2=36上一动点,线段PN的垂直平分线l交PM于Q点(1)求点Q的轨迹C 的方程
(2)若直线y=x+m与曲线C相交于A,B 两点,求三角形AOB面积的最大值
已知两定点F1(-根号2,0)F2(根号2,0),动点P满足条件PF2的长-PF1的长=2,点P的轨迹是
答案:1 悬赏:20 手机版
解决时间 2021-08-15 22:17
- 提问者网友:孤山下
- 2021-08-15 10:02
最佳答案
- 五星知识达人网友:不如潦草
- 2021-08-15 11:04
1)P的轨迹是以F1,F2为焦点的双曲线的左支
又c=√2,a=1
得E的方程为x^2-y^2=1(x≤-1)
2)利用数形结合思想,直线过定点(0,-1),斜率为k
根据直线与曲线E有两个交点,且k=-√2时直线与曲线相切,
可得k的取值范围是(-√2,-1)
3)x^2-y^2=1与y=kx-1联立,得(1-k^2)x^2+2kx-2=0
设:A(x1,y1),B(x2,y2)
故x1+x2=2k/(k^2-1),x1x2=2/(k^2-1)
|AB|=[√(k^2+1)]|x1-x2|=6√3
解得k^2=5/4或5/7
由(1)得k的取值范围是(-√2,-1)
所以k=√5/2
点C是过原点O和线段AB中点的直线与曲线E的交点
线段AB中点坐标是M(-2√5,4)
所以C(-√5,2),m=2
三角形ABC的面积为S=5√3
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯