在平行四边形ABCD中,E、F、G、H分别是四条边上的点,且AE=CF,BG=DH.求证EF与GH互相平分。
答案:1 悬赏:60 手机版
解决时间 2021-04-12 08:13
- 提问者网友:龅牙恐龙妹
- 2021-04-11 08:01
在平行四边形ABCD中,E、F、G、H分别是四条边上的点,且AE=CF,BG=DH.求证EF与GH互相平分。
最佳答案
- 五星知识达人网友:大漠
- 2021-04-11 09:12
令AC与EF交于O点,
∵ ABCD是平行四边形,
∴ ∠CAE=∠ACF,又AE=CF,∠AME=∠CMF,三角形AME≌三角形CMF
∴ O为AC,EF的中点
令AC与GH交于O'点,同样,我们得到,O'为AC,GH的中点
所以,O与O'重合,EF与GH互相平分.
∵ ABCD是平行四边形,
∴ ∠CAE=∠ACF,又AE=CF,∠AME=∠CMF,三角形AME≌三角形CMF
∴ O为AC,EF的中点
令AC与GH交于O'点,同样,我们得到,O'为AC,GH的中点
所以,O与O'重合,EF与GH互相平分.
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯