永发信息网

特征多项式

答案:1  悬赏:50  手机版
解决时间 2021-08-19 10:50
  • 提问者网友:沦陷
  • 2021-08-18 16:09
特征多项式
最佳答案
  • 五星知识达人网友:西岸风
  • 2021-08-18 17:16

要理解特征多项式,首先需要了解一下特征值与特征向量,这些都是联系在一起的:
设A是n阶矩阵,如果数λ和n维非零列向量x使得关系式
Ax=λx
成立,那么,这样的数λ就称为方阵A的特征值,非零向量x称为A对应于特征值λ的特征向量.
然后,我们也就可以对关系式进行变换:
(A-λE)x=0 其中E为单位矩阵
这是n个未知数n个方程的齐次线性方程组,它有非零解的充要条件是系数行列式为0,即
|A-λE|=0
带入具体的数字或者符号,可以看出该式是以λ为未知数的一元n次方程,称为方阵A的特征方程,左端 |A-λE|是λ的n次多项式,也称为方阵A的特征多项式.
解法:
1、把|λE-A|的各行(或各列)加起来,若相等,则把相等的部分提出来(一次因式)后,剩下的部分是二次多项式,肯定可以分解因式.
2、把|λE-A|的某一行(或某一列)中不含λ的两个元素之一化为零,往往会出现公因子,提出来,剩下的又是一二次多项式.
3、试根法分解因式.
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯