如图,AB为圆O的直径,CD⊥AB于点E,叫圆O与点D,OF⊥AC于点F。
当∠D=30°,BC=1时,求圆中阴影部分的面积
如图,AB是圆O的直径,D是圆O上一动点,延长AD到C使CD=AD,连接BC,BD
(1)证明:当D点与A点不重合时,总有AB=BC
(2)设圆O的半径为2,AD=x,BD=y,用含x的式子表示y
(3)BC与圆O是否有可能相切?若不可能相切,则说明理由,若能相切,则指出x为何值时相切
如图,AB为圆O的直径,CD⊥AB于点E,叫圆O与点D,OF⊥AC于点F。
当∠D=30°,BC=1时,求圆中阴影部分的面积
如图,AB是圆O的直径,D是圆O上一动点,延长AD到C使CD=AD,连接BC,BD
(1)证明:当D点与A点不重合时,总有AB=BC
(2)设圆O的半径为2,AD=x,BD=y,用含x的式子表示y
(3)BC与圆O是否有可能相切?若不可能相切,则说明理由,若能相切,则指出x为何值时相切
1.
连接OC
CD⊥AB于点E,
∴BC=BD (垂径定理)
∴∠BCD=∠D=30° (等弦所对的圆周角相等)
又因∠BEC=90°,BC=1
∴BE=BC/2=1/2
CE=√(BC²-BE²)=(√3)/2
∵∠BAC=∠D=30° (同弦所对圆周角相等)
又因为∠BAC=30°,∠ACB=90° (直径所对的圆周角是直角)
∴OA=OB=BC=1
而 ∠BOC=2∠BAC=60° (同弦所对圆心角是圆周角的2倍)
∴∠COA=120°
∴扇形AOC的面积=120°/360°×S圆=πOA²/3=π/3
∴S阴=S扇-S△AOC
=π/3-OA×CE/2
=π/3-(√3)/4
=(4π-3√3)/12
2.
(1).证明
∵总有∠ADB=90° (直径所对的圆周角是直角)
∴∠CDB=90°
∵AD=CD,∠ADB=∠CDB=90°,BD=BD
∴△ABD≌△CBD (SAS)
∴AB=BC
(2)若半径为2,则直径为4
即AB=4
∵∠ADB=90°,AD=x , BD=y
∴x²+y²=4²
y=√(16-x²)
(2)
可能,理由如下:
若BC与圆○相切
则∠ABC=90°
已证△ABD≌△CBD
∴∠ABD=∠CBD=45°又因为∠BDC=90°
∴∠C=∠CBD=45°
∴CD=BD
即x=y
∴x²+y²=2x²=4²=16
x=2√2
第一题,连结oc。∠D=30°,可知,∠A=30°BC=1,可知圆直径是2,AC由勾股得根号3 因为∠A=30°,所以∠COB=60度 ∠COA=180-60=120度,S扇AOC=(3.14*3.14*1*2*120)/360=?再算那等腰三角形的,S=0.5*0.5*根号3=? 阴影就出来了扇形-等腰三角形的 本人根号不好打,自己算答案
第二题,证:因为CD=AD,D是中点,∠BDA=90 度 AC又是一条线,D又在AC上,明显BD⊥AC,I不就可以得结论了 ih 小孩子多想想吗,不要光靠网络,都告诉你完了这题出给你的就起不了意义了……