已知函数f(x)=sin^x+2√3sin(x+π/4)cos(x-π/4)-cos^2x-√3
答案:2 悬赏:0 手机版
解决时间 2021-03-07 16:39
- 提问者网友:皆是孤独
- 2021-03-06 16:06
求函数的最小正周期和单调递减区间
最佳答案
- 五星知识达人网友:零点过十分
- 2021-03-06 16:39
解:已知函数的表达式为:
f(x) = sin²x + 2√3sin(x+π/4)cos(x-π/4) -- cos²x -- √3 对吧?
细节分析:
① cos2x = cos(x + x)
= cosx cosx -- sinx sinx
= cos²x -- sin²x
② sin(x + π/4) = sinx cos(π/4) + cosx sin(π/4)
= (√2/2) sinx + (√2/2) cosx
= (√2/2) (sinx + cosx)
③ cos(x -- π/4) = cosx cos(π/4) + sinx sin(π/4)
= (√2/2) cosx + (√2/2) sinx
= (√2/2) (sinx + cosx)
把以上三式代入原函数表达式,得:
f(x) = sin²x + 2√3sin(x+π/4)cos(x-π/4) -- cos²x -- √3
= sin²x -- cos²x + 2√3sin(x+π/4)cos(x-π/4) -- √3
= -- (cos²x -- sin²x) + 2√3sin(x+π/4)cos(x-π/4) -- √3
= -- cos2x + 2√3 × [(√2/2) (sinx + cosx)]² -- √3
= -- cos2x + 2√3 × [ (1/2) × (sinx + cosx)² ] -- √3
= -- cos2x + √3 × (sinx + cosx)² -- √3
= -- cos2x + √3 × (1 + 2 sinx cosx) -- √3 (注:sin²x + cos²x = 1)
= -- cos2x + √3 × (1 + sin2x) -- √3 (注:sin2x = 2 sinx cosx)
= √3 sin2x -- cos2x
= 2 × [ (√3/2) sin2x -- (1/2) cos2x ]
= 2 × [ sin2x cos(π/6) -- cos2x sin(π/6) ]
= 2sin(2x -- π/6)
∴ 其最小正周期为:
T = 2π/ 2
= π
再求其单调递减区间:
设X = 2x -- π/6,
而sinX的单调递减区间为 [ 2kπ + π/2,2kπ + 3π/2 ]
∴ 2kπ + π/2 ≤ 2x -- π/6 ≤ 2kπ + 3π/2
∴2kπ + π/2 + π/6 ≤ 2x ≤ 2kπ + 3π/2 + π/6
∴2kπ + 2π/3 ≤ 2x ≤ 2kπ + 5π/3
∴ kπ + π/3 ≤ x ≤ kπ + 5π/6
∴ f(x)的单调递减区间为 [ kπ + π/3,kπ + 5π/6 ] (k ∈Z)。
祝您学习顺利!
f(x) = sin²x + 2√3sin(x+π/4)cos(x-π/4) -- cos²x -- √3 对吧?
细节分析:
① cos2x = cos(x + x)
= cosx cosx -- sinx sinx
= cos²x -- sin²x
② sin(x + π/4) = sinx cos(π/4) + cosx sin(π/4)
= (√2/2) sinx + (√2/2) cosx
= (√2/2) (sinx + cosx)
③ cos(x -- π/4) = cosx cos(π/4) + sinx sin(π/4)
= (√2/2) cosx + (√2/2) sinx
= (√2/2) (sinx + cosx)
把以上三式代入原函数表达式,得:
f(x) = sin²x + 2√3sin(x+π/4)cos(x-π/4) -- cos²x -- √3
= sin²x -- cos²x + 2√3sin(x+π/4)cos(x-π/4) -- √3
= -- (cos²x -- sin²x) + 2√3sin(x+π/4)cos(x-π/4) -- √3
= -- cos2x + 2√3 × [(√2/2) (sinx + cosx)]² -- √3
= -- cos2x + 2√3 × [ (1/2) × (sinx + cosx)² ] -- √3
= -- cos2x + √3 × (sinx + cosx)² -- √3
= -- cos2x + √3 × (1 + 2 sinx cosx) -- √3 (注:sin²x + cos²x = 1)
= -- cos2x + √3 × (1 + sin2x) -- √3 (注:sin2x = 2 sinx cosx)
= √3 sin2x -- cos2x
= 2 × [ (√3/2) sin2x -- (1/2) cos2x ]
= 2 × [ sin2x cos(π/6) -- cos2x sin(π/6) ]
= 2sin(2x -- π/6)
∴ 其最小正周期为:
T = 2π/ 2
= π
再求其单调递减区间:
设X = 2x -- π/6,
而sinX的单调递减区间为 [ 2kπ + π/2,2kπ + 3π/2 ]
∴ 2kπ + π/2 ≤ 2x -- π/6 ≤ 2kπ + 3π/2
∴2kπ + π/2 + π/6 ≤ 2x ≤ 2kπ + 3π/2 + π/6
∴2kπ + 2π/3 ≤ 2x ≤ 2kπ + 5π/3
∴ kπ + π/3 ≤ x ≤ kπ + 5π/6
∴ f(x)的单调递减区间为 [ kπ + π/3,kπ + 5π/6 ] (k ∈Z)。
祝您学习顺利!
全部回答
- 1楼网友:一把行者刀
- 2021-03-06 18:18
1、
f(x)=-(cos²x-sin²x)+2√3cos[π/2-(x+π/4)]cos(x-π/4)-√3
=-cos2x+2√3cos(-x+π/4)cos(x-π/4)-√3
=-cos2x+2√3cos²(x-π/4)-√3
=-cos2x+2√3[1+cos2(x-π/4)]/2-√3
=-cos2x+√3[1+cos(2x-π/2)]-√3
=-cos2x+sin2x
=√2(√2/2*sin2x-√2/2cos2x)
=√2(sin2xcosπ/4-cos2xsinπ/4)
=√2sin(2x-π/4)
所以t=2π/2=π
递减则2kπ+π/2<2x-π/4<2kπ+3π/2
2kπ+3π/4<2x<2kπ+7π/4
kπ+3π/8<x<kπ+7π/8
所以减区间(kπ+3π/8,kπ+7π/8)
2、
-π/12<=x<=25π/36
-5π/12<=2x-π/4<=41π/36
所以2x-π/4=-5π/12最小,x=-π/12
2x-π/4=π/2最大,x=3π/8
sin(-5π/12)
=-sin(5π/12)
=-sin(π/4+π/6)
=-sinπ/4cosπ/6-cosπ/4sinπ/6
=-(√6+√2)/4
sinπ/2=1
所以
x=-π/12,y最小=-(√3+1)/2
x=3π/8,y最大=√2
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯