永发信息网

如图,已知∠AOB=30°,点P为∠AOB内一点,OP=10cm,分别作出P点关于OA、OB的对称点P1,P2,连接P1P2交OA于M,交OB于N,则△PMN的周长为

答案:2  悬赏:40  手机版
解决时间 2021-04-05 13:11
  • 提问者网友:遁入空寂
  • 2021-04-04 19:20
如图,已知∠AOB=30°,点P为∠AOB内一点,OP=10cm,分别作出P点关于OA、OB的对称点P1,P2,连接P1P2交OA于M,交OB于N,则△PMN的周长为________.
最佳答案
  • 五星知识达人网友:思契十里
  • 2021-04-04 19:31
10解析分析:根据轴对称的性质可得∠P1OA=∠AOP,∠P2OB=∠BOP,PM=P1M,PN=P2N,P1O=PO=P2O,从而求出△OP1P2是等边三角形,△PMN的周长等于P1P2,从而得解.
解答:∵P1、P2分别是P关于OA、OB的对称点,
∴∠P1OA=∠AOP,∠P2OB=∠BOP,PM=P1M,PN=P2N,P1O=PO=P2O,
∴∠P1OP2=∠P1OA+∠AOP+∠P2OB+∠BOP=2∠AOB,
∵∠AOB=30°,
∴∠P1OP2=2×30°=60°,
∴△OP1P2是等边三角形,
又∵△PMN的周长=PM+MN=PN=P1M+MN+P2N=P1P2,
∴△PMN的周长=P1P2=P1O=PO=10cm.
全部回答
  • 1楼网友:封刀令
  • 2021-04-04 20:12
回答的不错
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯