如图,在矩形ABCD中,点E是AD的中点,∠EBC的平分线交CD于点F,将△DEF沿EF折叠,点D恰好落在BE上M点处,延长BC、EF交于点N.有下列四个结论:①DF
答案:2 悬赏:0 手机版
解决时间 2021-04-08 07:52
- 提问者网友:凉末
- 2021-04-07 12:39
如图,在矩形ABCD中,点E是AD的中点,∠EBC的平分线交CD于点F,将△DEF沿EF折叠,点D恰好落在BE上M点处,延长BC、EF交于点N.有下列四个结论:①DF=CF;②BF⊥EN;③△BEN是等边三角形;④S△BEF=3S△DEF.其中,将正确结论的序号全部选对的是A.①②③B.①②④C.②③④D.①②③④
最佳答案
- 五星知识达人网友:千夜
- 2021-04-07 12:48
B解析分析:由折叠的性质、矩形的性质与角平分线的性质,可证得CF=FM=DF;
易求得∠BFE=∠BFN,则可得BF⊥EN;
易证得△BEN是等腰三角形,但无法判定是等边三角形;
易求得BM=2EM=2DE,即可得EB=3EM,根据等高三角形的面积比等于对应底的比,即可求得
易求得∠BFE=∠BFN,则可得BF⊥EN;
易证得△BEN是等腰三角形,但无法判定是等边三角形;
易求得BM=2EM=2DE,即可得EB=3EM,根据等高三角形的面积比等于对应底的比,即可求得
全部回答
- 1楼网友:撞了怀
- 2021-04-07 13:22
回答的不错
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯