永发信息网

分别以△ABC的边AB,AC为边,向三角形的外侧作正方形ABDE和正方形ACFG,点M为BC中点,求证:AM丄EG

答案:3  悬赏:10  手机版
解决时间 2021-11-23 20:40
  • 提问者网友:雾里闻花香
  • 2021-11-23 11:21
分别以△ABC的边AB,AC为边,向三角形的外侧作正方形ABDE和正方形ACFG,点M为BC中点,求证:AM丄EG
最佳答案
  • 五星知识达人网友:逐風
  • 2021-11-23 12:00
证明;:延长AM,使MN=AM,连接CN,延长MA与EG相交于点H
因为M是BC的中点
所以BM=MC
因为角AMB=角CMN
所以三角形AMB和三角形NMC全等(SAS)
所以AB=CN
角ABM=角NCM
所以AB平行CN
所以角BAC+角ACN=180度
因为四边形ABDE是正方形
所以AB=AE
角BAE=90度
因为四边形ACFG是正方形
所以AC=AG
角CAG=90度
所以CN=AE
因为角BAE+角BAC+角CAG+角EAG=360度
所以角BAC+角EAG=180度
所以角ACN=角EAG
所以三角形ACN和三角形GAE全等(SAS)
所以角AGE=角CAN
因为角CAN+角CAG+角GAH=180度
所以角GAH+角AGE=90度
因为角GAH+角AGE+角AHG=180度
所以角AHG=90度
所以AM垂直EG
全部回答
  • 1楼网友:你哪知我潦倒为你
  • 2021-11-23 12:31
延长AM到N,使MN=AM,延长MA交EG于点P,连接BN NC
BM=CM
四边形ABNC是平行四边形
BN=AC=AG
角EAG+角BAC=180
角ABN=角BAC=180
则角EGA=角ABN
因AE=AB
所以三角形EAG全等三角形ABN
则角AEG=角BAN
因角EAB=90
则角EAP+角BAN=90
角AEP+角EAP=90
所以MA垂直EG
  • 2楼网友:舍身薄凉客
  • 2021-11-23 12:20
(1)延长AMD到N,使MN=AM,延长MA交EG于点P,连接BN、NC.
∵BM=CM,
∴四边形ABNC是平行四边形.
∴BN=AC=AG
∵∠EAG ∠BAC=180°,
∠ABN ∠BAC=180°
∴∠EAG=∠ABN.
∵AE=AB,
∴△EAG≌△ABN
∴∠AEG=∠BAN
又∵∠EAB=90°
∴∠EAP ∠BAN=90°
∴∠AEP ∠EAP=90°
∴MA⊥EG
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯