黎曼流形的联络与曲率
答案:1 悬赏:30 手机版
解决时间 2021-03-21 22:21
- 提问者网友:趣果有间
- 2021-03-21 02:02
黎曼流形的联络与曲率
最佳答案
- 五星知识达人网友:话散在刀尖上
- 2021-03-21 03:08
流形上的黎曼度量给定后,我们可以得到一个唯一确定的对称(即无挠)联络,并且它保持黎曼度量。这个联络称为这个黎曼度量的Levi-Civita联络。
有了联络,我们就可以定义向量场的协变微分和协变导数,从而建立起流形上的微分学。欧氏空间的联络就是通常意义上的向量函数的微分。 黎曼度量还诱导出曲率的概念,它反映了流形的弯曲程度。曲率处处为零的流形称为平坦黎曼流形。欧氏空间就是最常见的平坦流形。
德国数学家高斯最早研究了曲面上的曲率,发现这种曲率是内蕴的,尽管它的定义式不是内蕴的。
有了联络,我们就可以定义向量场的协变微分和协变导数,从而建立起流形上的微分学。欧氏空间的联络就是通常意义上的向量函数的微分。 黎曼度量还诱导出曲率的概念,它反映了流形的弯曲程度。曲率处处为零的流形称为平坦黎曼流形。欧氏空间就是最常见的平坦流形。
德国数学家高斯最早研究了曲面上的曲率,发现这种曲率是内蕴的,尽管它的定义式不是内蕴的。
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯