换底公式是什么啊?
答案:5 悬赏:70 手机版
解决时间 2021-08-19 03:45
- 提问者网友:动次大次蹦擦擦
- 2021-08-18 17:52
换底公式是什么啊?
最佳答案
- 五星知识达人网友:想偏头吻你
- 2021-08-18 19:23
loga(b)=logc(b)/logc(a),望采纳。。
全部回答
- 1楼网友:七十二街
- 2021-08-18 22:38
换底公式:
以a为底N的对数等于以m为底N的对数除以以m为底a的对数。
logaN=logmN /logma
- 2楼网友:雾月
- 2021-08-18 21:48
对数中
logaN=logmN÷logma(小写的底数自己分辨一下)
- 3楼网友:怙棘
- 2021-08-18 21:02
换底公式是一个比较重要的公式,在很多对数的计算中都要使用。也是高中数学的重点
log(a)(b)表示以a为底的b的对数。
所谓的换底公式就是log(a)(b)=log(n)(b)/log(n)(a).
换底公式的推导过程:
若有对数 log(a)(b) 设a=n^x,b=n^y
则 log(a)(b)=log(n^x)(n^y)
根据 对数的基本公式log(a)(M^n)=nlog(a)(M) 和 基本公式log(a^n)(M)=1/n×log(a)(M)
易得 log(n^x)(n^y)=y/x
由 a=n^x,b=n^y 可得 x=log(n)(a),y=log(n)(b)
则有:log(a)(b)=log(n^x)(n^y)=log(n)(b)/log(n)(a)
得证:log(a)(b)=log(n)(b)/log(n)(a).换底公式的推导:
设e^x=b^m,e^y=a^n
则log(a^n)(b^m)=log(e^y)(e^x)=x/y
x=ln(b^m),y=ln(a^n)
得:log(a^n)(b^m)=ln(b^m)÷ln(a^n)
由基本性质4可得
log(a^n)(b^m) = [m×ln(b)]÷[n×ln(a)] = (m÷n)×{[ln(b)]÷[ln(a)]}
再由换底公式
log(a^n)(b^m)=m÷n×[log(a)(b)] 性质: log(a)(N)=log(b)(N)÷log(b)(a)
推导如下:
N = a^[log(a)(N)]
a = b^[log(b)(a)]
综合两式可得
N = {b^[log(b)(a)]}^[log(a)(N)] = b^{[log(a)(N)]*[log(b)(a)]}
又因为N=b^[log(b)(N)]
所以 b^[log(b)(N)] = b^{[log(a)(N)]*[log(b)(a)]}
所以 log(b)(N) = [log(a)(N)]*[log(b)(a)] {这步不明白或有疑问看上面的}
所以log(a)(N)=log(b)(N) / log(b)(a)
公式二:log(a)(b)=1/log(b)(a)
证明如下:
由换底公式 log(a)(b)=log(b)(b)/log(b)(a) ----取以b为底的对数
log(b)(b)=1 =1/log(b)(a) 还可变形得: log(a)(b)×log(b)(a)=1
在实用上,常采用以10为底的对数,并将对数记号简写为lgb,称为常用对数,它适用于求十进伯制整数或小数的对数。例如lg10=1,lg100=lg102=2,lg4000=lg(103×4)=3+lg4,可见只要对某一范围的数编制出对数表,便可利用来计算其他十进制数的对数的近似值。在数学理论上一般都用以无理数e=2.7182818……为底的对数,并将记号 loge。简写为ln,称为自然对数,因为自然对数函数的导数表达式特别简洁,所以显出了它比其他对数在理论上的优越性。历史上,数学工作者们编制了多种不同精确度的常用对数表和自然对数表。但随着电子技术的发展,这些数表已逐渐被现代的电子计算工具所取代。
- 4楼网友:西风乍起
- 2021-08-18 20:29
所谓的换底公式就是log(a)(b)=log(n)(b)/log(n)(a).
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯