若Sn=n乘(n+2),怎么才能证明1/S1+2/S2+3/S3+…+1/Sn<3/4?
答案:4 悬赏:60 手机版
解决时间 2021-02-20 10:12
- 提问者网友:两耳就是菩提
- 2021-02-19 13:05
若Sn=n乘(n+2),怎么才能证明1/S1+2/S2+3/S3+…+1/Sn<3/4?
最佳答案
- 五星知识达人网友:老鼠爱大米
- 2021-02-19 14:01
1/Sn=1/[n(n+2)]=[1/n-1/(n+2)]/2
1/S1+1/S2+…+1/Sn
=[(1-1/3)+(1/2-1/4)+(1/3-1/5)+...+1/(n-1)-1/(n+1)+1/n-1/(n+2)]/2
=[1+1/2-1/(n+1)-1/(n+2)]/2
=3/4-[1/(n+1)+1/(n+2)]/2
所以1/S1+1/S2+…+1/Sn<3/4
1/S1+1/S2+…+1/Sn
=[(1-1/3)+(1/2-1/4)+(1/3-1/5)+...+1/(n-1)-1/(n+1)+1/n-1/(n+2)]/2
=[1+1/2-1/(n+1)-1/(n+2)]/2
=3/4-[1/(n+1)+1/(n+2)]/2
所以1/S1+1/S2+…+1/Sn<3/4
全部回答
- 1楼网友:鱼忧
- 2021-02-19 16:15
Sn=n*(n+2) ,则1/Sn=1/2[1/n-1/(n+2)]
所以 1/S1+2/S2+3/S3+…+1/Sn
=1/2[1/1-1/3+1/2-1/4+1/3-1/5...+1/(n-2)-1/n+1/(n-1)-1/(n+1)+1/n-1/(n+2)]
化简得3/4-1/2[1/(n+1)+1/(n+2)]<3/4
- 2楼网友:青尢
- 2021-02-19 15:16
Sn=n(n+2)
1/Sn=1/[n(n+2)]=(1/2)[1/n-1/(n+2)]
1/S1+1/S2+...Sn=(1/2)[1-1/3+1/2-1/4+1/3-1/5+…+1/(n-1)-1/(n+1)+1/n-1/(n+2)]=(1/2)[1+1/2-1/(n+1)-1/(n+2)]=3/4-(2n+3)/[2(n+1)*(n+2)]
很明显是小于3/4的
- 3楼网友:荒野風
- 2021-02-19 14:06
sn=(3+2n+1)n/2=n(n+2)
tn=1/s1+2/s2+3/s3+……+n/sn
=1/(1*3)+1/(2*4)+1/(3*5)+...+1/[(n-1)(n+1)+1/[n(n+2)]
=1/2×[(1-1/3)+(1/2-1/4)+(1/3-1/5)+..+[1/(n-1)-1/(n+1)]+[1/n-1/(n+2)]
=1/2×[(1-1/3)+(1/2-1/4)+(1/3-1/5)+..+[1/(n-1)-1/(n+1)]+[1/n-1/(n+2)]
=1/2×[1+1/2-1/(n+1)-1/(n+2)]
=1/2×[1+1/2-1/(n+1)-1/(n+2)]
=3/4-(2n+3)/[2(n+1)(n+2)]
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯