永发信息网

已知{an}是等差数列,其中a3+a7=18,a6=11.(Ⅰ)求数列{an}通项an;(Ⅱ)若数列{bn}满足bn=an+2n-1(n∈N+),求数列{bn}的前n

答案:2  悬赏:80  手机版
解决时间 2021-01-02 18:49
  • 提问者网友:謫仙
  • 2021-01-02 11:18
已知{an}是等差数列,其中a3+a7=18,a6=11.
(Ⅰ)求数列{an}通项an;
(Ⅱ)若数列{bn}满足bn=an+2n-1(n∈N+),求数列{bn}的前n项和Tn.
最佳答案
  • 五星知识达人网友:梦中风几里
  • 2021-01-02 11:49
解:(Ⅰ)∵a3+a7=2a5=18
∴a5=9
∴d=a6-a5=11-9=2,a1=1
∴an=2n-1
(Ⅱ)∵bn=an+2n-1(n∈N+)
∴bn=2n-1+2n-1
∴Tn=(1+20)+(3+21)+…+[(2n-1)+2n-1]
=[1+3+…+(2n-1)]+(20+21+…+2n-1)
=n2+2n-1解析分析:(Ⅰ)根据a3+a7=18,可以求出a5,进而求出等差数列的首项和公差;(Ⅱ)先写出bn通项公式,可以看出数列{bn}是由等差数列和等比数列的和构成,因此采取分组求和.点评:本题考查等差数列的通项公式以及数列求和的方法,对于数列求和的方法要根据数列的特点采取不同求和方法,像本题中数列{bn}是由等差数列和等比数列的和构成,因此采取分组求和的方法.
全部回答
  • 1楼网友:底特律间谍
  • 2021-01-02 12:46
正好我需要
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯