如图所示,E是正方形ABCD中AD边上的中点,BD与CE交于点F.请你根据图形判断AF与BE的位置具有什么关系?并给予证明.
如图所示,E是正方形ABCD中AD边上的中点,BD与CE交于点F.请你根据图形判断AF与BE的位置具有什么关系?并给予证
答案:1 悬赏:0 手机版
解决时间 2021-02-06 03:51
- 提问者网友:缘字诀
- 2021-02-05 18:23
最佳答案
- 五星知识达人网友:何以畏孤独
- 2021-02-05 19:45
AF⊥BE.
证明:∵四边形ABCD是正方形,E是AD边上的中点,
∴AE=DE,AB=CD,∠BAD=∠CDA=90°,
在△BAE和△CDE中
∵
AE=DE
∠BAE=∠CDE
AB=CD,
∴△BAE≌△CDE(SAS),
∴∠ABE=∠DCE,
∵四边形ABCD是正方形,
∴AD=DC,∠ADB=∠CDB=45°,
∵在△ADF和△CDF中,
AD=DC
∠ADF=∠CDF
DF=DF,
∴△ADF≌△CDF(SAS),
∴∠FAD=∠FCD,
∵∠ABE=∠DCE
∴∠ABE=∠FAD,
∵∠BAD=∠BAF+∠DAF=90°,
∴∠ABE+∠BAF=90°,
∴∠AGB=180°-90°=90°,
∴AF⊥BE.
试题解析:
首先根据正方形的性质证得△BAE≌△CDE,推出∠ABE=∠DCE,再证△ADF≌△CDF,求得∠FAD=∠FCD,推出∠ABE=∠FAD;求出∠ABE+∠BAG=90°;最后在△AGE中根据三角形的内角和是180°求得∠AGE=90°即可.
名师点评:
本题考点: 正方形的性质;全等三角形的判定与性质.
考点点评: 本题主要考查了正方形的性质及全等三角形的判定与性质.解答本题要充分利用正方形的特殊性质:①四边相等,两两垂直; ②四个内角相等,都是90度; ③对角线相等,相互垂直,且平分一组对角.
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯