试证方程(x^3)+x=e^x至少存在一个正实根。
答案:5 悬赏:80 手机版
解决时间 2021-02-17 19:28
- 提问者网友:送舟行
- 2021-02-17 09:53
试证方程(x^3)+x=e^x至少存在一个正实根。
最佳答案
- 五星知识达人网友:轻熟杀无赦
- 2021-02-17 10:26
定义 称随机变量列 依概率收敛于随机变量Z,如果对任意给定的 ,有
.
随机变量列 依概率收敛于A,有时记作
,
特别,Z可以是常数A或 .
二 大数定律
1、切比雪夫(切贝绍夫)大数定律 设 为两两独立(或两两不相关)的随机变量列, 存在,且存在常数C,使 ,则对任何给定的 ,有
切比雪夫大数定律是切比雪夫不等式的推论(见(4.7)式).
2、伯努利大数定律 设 是“事件A在试验中出现”的概率; 是n次独立重复试验(伯努利试验)中事件A出现的频率,则 依概率收敛于 :
.
直观上表示当n充分大时 .
3、辛钦大数定律 设 独立同分布随机变量,只要数学期望 存在,则
.
即当n充分大时,有 .
三 中心极限定理 中心极限定理是关于“随机变量之和的极限分布是正态分布”的一系列定理的总称.
1、棣莫弗-拉普拉斯定理 设随机变量X服从参数为 的二项分布,则当n充分大时,X近似地服从正态分布 或近似地
.
(1) 局部定理 对于任意p(0
(2) 积分定理 对于任意p(0 ,
其中 .
2、列维-林德伯格定理 设 是独立同分布随机变量,其数学期望和方差存在: , ,则当n充分大时近似地
,
即对于任意实数 ,当n充分大时,有
,
其中 ;
,
其中 .
三、典型例题及其分析
例5.2.1 在每次试验中,事件 发生的概率为0.5,利用切比雪夫不等式估计:在1000次试验中事件 发生的次数在400次至600次之间的概率.
设1000次试验中事件 发生的次数为 ,则 服从参数为 的二项分布,因而 再用切比雪夫不等式估计概率
在切比雪夫不等式 中,取 则事件 发生的次数在400次至600次之间的概率为
例5.2.2 如果随机变量 的概率密度为 ,且 存在,证明:对任意 有
利用切比雪夫不等式的证明方法.
由于函数 在 内单调递增,故事件 ,因此
证明中的关键一步是对被积函数乘以大于1的因子 ,使等式变为不等式.次题实际上是考查切比雪夫不等式的证明.
例5.2.3 设随机变量 相互独立,且服从相同的分布: 又 存在 .试证明:对任意 有
类似于切比雪夫大数定律的证明.
由于 的期望为
令 的方差为 ,则
由于 仍相互独立的,故 的期望和方差分别为
对 应用切比雪夫不等式知
当 时,由极限的夹逼定理知
本题是考查切比雪夫大数定律的证明技巧.结论的另一种写法为: ,即样本二阶矩依概率收敛于总体二阶矩.这是统计中的一重要结论.
例5.3.1 某保险公司经多年的资料统计表明,在索赔户中被盗户占20%,在随意抽查的100家索赔户中被盗的索赔数为随机变量
(1) 写出 的概率分布;
(2) 利用德莫佛-拉普拉斯定理,求被盗德索赔户数不少于14户且不多于30户的概率近似值.
(1988年考研题)
(1)据题意可知,100家索赔户中被盗的索赔户数 ,即 的分布律为
(2)由 利用德莫佛-拉普拉斯定理知
德莫佛-拉普拉斯定理在实际中由广泛的应用,运用此定理计算概率近似值时,其关键是:“标准化”和“正态近似”,当 越大时,所得得近似值越精确.
例5.3.2 计算器在进行加法时,将每一加数舍入最靠近它的整数.设所有舍入误差是独立的,且在 上服从均匀分布.
(1) 若将1500个数相加,问误差总和的绝对值超过15的概率是多少?
(2) 最多可有几个数相加使得误差总和的绝对值小于10的概率不小于0.90?
设每个加数的舍入误差为 ,由题设知 独立同分布,且 因此,可利用独立同分布的中心极限定理,即林德伯格-列维中心极限定理,来进行近似计算.
令 同上所设,由于 ,从而
(1) 记 为将1500个数相加的误差总和,则有 ,从而由林德伯格-列维中心极限定理知 近似地服从 ,从而
即误差总和的绝对值超过15的概率约为0.1802.
(2)记 表示将n个数相加的误差总和,要使 由林德伯格-列维定理可知, 近似服从 .故
即
查表得 故
故最多有443个数相加使得误差总和的绝对值小于10的概率不小于0.90.
本题是独立同分布中心极限定理——林德伯格-列维定理的典型应用题,解题中关键还是要将所求问题“标准化”为定理所要求的形式.
综例5.4.1 现有一大批种子,其中良种占1/6,现从中任取6000粒种子,试分别用切比雪夫不等式和用中心极限定理计算这6000粒种子中良种所占的比例与1/6之差的绝对值不超过0.01的概率.
设随机变量 表示所取6000粒种子中良种的粒数,由题意可知, ,于是
(1) 要估计的概率为 相当于在切比雪夫不等式中取 于是由切比雪夫不等式可得
(2) 由德莫佛-拉普拉斯中心极限定理,二项分布 可用正态分布 近似。于是所求概率为
从本例看出:由切比雪夫不等式只能得出要求的概率不小于0.7685,而由中心极限定理可得到要求的概率近似等于0.9625.从而可知,由切比雪夫不等式得到的下界是十分粗糙的,但由于它的要求较低,只需知道 的期望与方差,因而在理论上由许多应用.
综例5.4.2 设 在区间 上连续,并记 设随机变量 服从 上的均匀分布, 独立且与 同分布,设
且
(1) 求 和 ,并证明:
(2) 对任意 ,利用中心极限定理估计概率 .
(1)由于 ,且 与 独立同分布,故
又因为 相互独立,故 也相互独立,从而
于是,对任意 ,由切比雪夫不等式得
所以
(2) 由林德伯格-列维中心极限定理知
因此,对任意 ,有
本题是大数定律与中心极限定理的一个综合题,其中涉及的期望与方差的计算以及极限定理的运用都是经典的方法,读者应当熟练掌握和运用.本题实际上是实际问题中,利用蒙特卡罗方法计算积分的理论依据之一.
综例5.4.3 抽样检查产品质量时,如果发现次品多于10个,则拒绝接受这批产品,设某批产品的次品率为10%,问至少应抽所少个产品检查才能保证拒绝接受该产品的概率达到0.9?
设 为至少应抽的产品数, 为其中的次品数,对 故由德莫佛-拉普拉斯定理有
当 充分大时,
由题意知
即
查表得 即
本题是一典型的用德莫佛-拉普拉斯定理近似计算的题.从解题过程中可以发现,二项分布 其实可看成是一个独立同分布的0-1分布的和,即 其中
综例5.4.4 设某种器件使用寿命(单位:小时)服从指数分布,平均使用寿命为20小时,具体使用时是当一器件损坏后立即更另一新器件,如此继续,已知每一器件进价为a元,试求在年计中应为此器件作多少元预算,才可以有95%的把握一年够用(定一年有2000个工作小时).
设第 个器件的使用寿命为 由于 服从参数为 的指数分布,且 所以 ,从而
假定一年至少准备 件才能有95%的把握够用,若记 相互独立,则问题应为求 ,
由独立同分布的中心极限定理知
故
查表得 即
因此每年应为此器件至少作出118a(元)的预算,才能有95%的把握保证一年够用.
综例5.4.5 设某农贸市场某商品每日价格的变化是均值为0,方差为 的随机变量,即有关系式
其中, 表示第n天该商品的价格, 为均值为0,方差为 的独立同分布随机变量( 表示第n天该商品价格的增加数),如果今天该商品的价格为100,求18天后该商品的价格在96与104之间的概率.
设 表示今天该商品的价格, 为18天后该商品的价格,则
因此,问题为求 而这个概率可利用林德伯格-列维的独立同分布中心极限定理来近似确定.
由于 且 是独立同分布的, 从而,由林德伯格-列维定理知
本题的关键是要将 表示为 从而将问题转化为求独立同分布随机变量和 落在某个区间的概率,而这个问题的解决只需用林德伯格-列维定理就可以了.
综例5.4.6 假设 是来自总体 的简单随机样本,已知 试证:当n充分大时,随机变量 近似服从正态分布,并指出其分布参数.
(1996年考研题)
若设 ,则由于 是来自总体 的简单随机样本.故 独立同分布,且与 有相同分布,从而 也是独立同分布,且
于是,根据独立同分布的林德伯格-列维中心极限定理,得
即
亦即 近似服从标准正态分布 ,故当n充分大时,近似地有
本题其实是数理统计中,大样本场合下统计量 得渐进分布得计算问题,这类问题在求统计量的抽样分布时是经常出现的,关键是利用独立同分布的中心极限定理来求它们的近似分布.
.
随机变量列 依概率收敛于A,有时记作
,
特别,Z可以是常数A或 .
二 大数定律
1、切比雪夫(切贝绍夫)大数定律 设 为两两独立(或两两不相关)的随机变量列, 存在,且存在常数C,使 ,则对任何给定的 ,有
切比雪夫大数定律是切比雪夫不等式的推论(见(4.7)式).
2、伯努利大数定律 设 是“事件A在试验中出现”的概率; 是n次独立重复试验(伯努利试验)中事件A出现的频率,则 依概率收敛于 :
.
直观上表示当n充分大时 .
3、辛钦大数定律 设 独立同分布随机变量,只要数学期望 存在,则
.
即当n充分大时,有 .
三 中心极限定理 中心极限定理是关于“随机变量之和的极限分布是正态分布”的一系列定理的总称.
1、棣莫弗-拉普拉斯定理 设随机变量X服从参数为 的二项分布,则当n充分大时,X近似地服从正态分布 或近似地
.
(1) 局部定理 对于任意p(0
(2) 积分定理 对于任意p(0 ,
其中 .
2、列维-林德伯格定理 设 是独立同分布随机变量,其数学期望和方差存在: , ,则当n充分大时近似地
,
即对于任意实数 ,当n充分大时,有
,
其中 ;
,
其中 .
三、典型例题及其分析
例5.2.1 在每次试验中,事件 发生的概率为0.5,利用切比雪夫不等式估计:在1000次试验中事件 发生的次数在400次至600次之间的概率.
设1000次试验中事件 发生的次数为 ,则 服从参数为 的二项分布,因而 再用切比雪夫不等式估计概率
在切比雪夫不等式 中,取 则事件 发生的次数在400次至600次之间的概率为
例5.2.2 如果随机变量 的概率密度为 ,且 存在,证明:对任意 有
利用切比雪夫不等式的证明方法.
由于函数 在 内单调递增,故事件 ,因此
证明中的关键一步是对被积函数乘以大于1的因子 ,使等式变为不等式.次题实际上是考查切比雪夫不等式的证明.
例5.2.3 设随机变量 相互独立,且服从相同的分布: 又 存在 .试证明:对任意 有
类似于切比雪夫大数定律的证明.
由于 的期望为
令 的方差为 ,则
由于 仍相互独立的,故 的期望和方差分别为
对 应用切比雪夫不等式知
当 时,由极限的夹逼定理知
本题是考查切比雪夫大数定律的证明技巧.结论的另一种写法为: ,即样本二阶矩依概率收敛于总体二阶矩.这是统计中的一重要结论.
例5.3.1 某保险公司经多年的资料统计表明,在索赔户中被盗户占20%,在随意抽查的100家索赔户中被盗的索赔数为随机变量
(1) 写出 的概率分布;
(2) 利用德莫佛-拉普拉斯定理,求被盗德索赔户数不少于14户且不多于30户的概率近似值.
(1988年考研题)
(1)据题意可知,100家索赔户中被盗的索赔户数 ,即 的分布律为
(2)由 利用德莫佛-拉普拉斯定理知
德莫佛-拉普拉斯定理在实际中由广泛的应用,运用此定理计算概率近似值时,其关键是:“标准化”和“正态近似”,当 越大时,所得得近似值越精确.
例5.3.2 计算器在进行加法时,将每一加数舍入最靠近它的整数.设所有舍入误差是独立的,且在 上服从均匀分布.
(1) 若将1500个数相加,问误差总和的绝对值超过15的概率是多少?
(2) 最多可有几个数相加使得误差总和的绝对值小于10的概率不小于0.90?
设每个加数的舍入误差为 ,由题设知 独立同分布,且 因此,可利用独立同分布的中心极限定理,即林德伯格-列维中心极限定理,来进行近似计算.
令 同上所设,由于 ,从而
(1) 记 为将1500个数相加的误差总和,则有 ,从而由林德伯格-列维中心极限定理知 近似地服从 ,从而
即误差总和的绝对值超过15的概率约为0.1802.
(2)记 表示将n个数相加的误差总和,要使 由林德伯格-列维定理可知, 近似服从 .故
即
查表得 故
故最多有443个数相加使得误差总和的绝对值小于10的概率不小于0.90.
本题是独立同分布中心极限定理——林德伯格-列维定理的典型应用题,解题中关键还是要将所求问题“标准化”为定理所要求的形式.
综例5.4.1 现有一大批种子,其中良种占1/6,现从中任取6000粒种子,试分别用切比雪夫不等式和用中心极限定理计算这6000粒种子中良种所占的比例与1/6之差的绝对值不超过0.01的概率.
设随机变量 表示所取6000粒种子中良种的粒数,由题意可知, ,于是
(1) 要估计的概率为 相当于在切比雪夫不等式中取 于是由切比雪夫不等式可得
(2) 由德莫佛-拉普拉斯中心极限定理,二项分布 可用正态分布 近似。于是所求概率为
从本例看出:由切比雪夫不等式只能得出要求的概率不小于0.7685,而由中心极限定理可得到要求的概率近似等于0.9625.从而可知,由切比雪夫不等式得到的下界是十分粗糙的,但由于它的要求较低,只需知道 的期望与方差,因而在理论上由许多应用.
综例5.4.2 设 在区间 上连续,并记 设随机变量 服从 上的均匀分布, 独立且与 同分布,设
且
(1) 求 和 ,并证明:
(2) 对任意 ,利用中心极限定理估计概率 .
(1)由于 ,且 与 独立同分布,故
又因为 相互独立,故 也相互独立,从而
于是,对任意 ,由切比雪夫不等式得
所以
(2) 由林德伯格-列维中心极限定理知
因此,对任意 ,有
本题是大数定律与中心极限定理的一个综合题,其中涉及的期望与方差的计算以及极限定理的运用都是经典的方法,读者应当熟练掌握和运用.本题实际上是实际问题中,利用蒙特卡罗方法计算积分的理论依据之一.
综例5.4.3 抽样检查产品质量时,如果发现次品多于10个,则拒绝接受这批产品,设某批产品的次品率为10%,问至少应抽所少个产品检查才能保证拒绝接受该产品的概率达到0.9?
设 为至少应抽的产品数, 为其中的次品数,对 故由德莫佛-拉普拉斯定理有
当 充分大时,
由题意知
即
查表得 即
本题是一典型的用德莫佛-拉普拉斯定理近似计算的题.从解题过程中可以发现,二项分布 其实可看成是一个独立同分布的0-1分布的和,即 其中
综例5.4.4 设某种器件使用寿命(单位:小时)服从指数分布,平均使用寿命为20小时,具体使用时是当一器件损坏后立即更另一新器件,如此继续,已知每一器件进价为a元,试求在年计中应为此器件作多少元预算,才可以有95%的把握一年够用(定一年有2000个工作小时).
设第 个器件的使用寿命为 由于 服从参数为 的指数分布,且 所以 ,从而
假定一年至少准备 件才能有95%的把握够用,若记 相互独立,则问题应为求 ,
由独立同分布的中心极限定理知
故
查表得 即
因此每年应为此器件至少作出118a(元)的预算,才能有95%的把握保证一年够用.
综例5.4.5 设某农贸市场某商品每日价格的变化是均值为0,方差为 的随机变量,即有关系式
其中, 表示第n天该商品的价格, 为均值为0,方差为 的独立同分布随机变量( 表示第n天该商品价格的增加数),如果今天该商品的价格为100,求18天后该商品的价格在96与104之间的概率.
设 表示今天该商品的价格, 为18天后该商品的价格,则
因此,问题为求 而这个概率可利用林德伯格-列维的独立同分布中心极限定理来近似确定.
由于 且 是独立同分布的, 从而,由林德伯格-列维定理知
本题的关键是要将 表示为 从而将问题转化为求独立同分布随机变量和 落在某个区间的概率,而这个问题的解决只需用林德伯格-列维定理就可以了.
综例5.4.6 假设 是来自总体 的简单随机样本,已知 试证:当n充分大时,随机变量 近似服从正态分布,并指出其分布参数.
(1996年考研题)
若设 ,则由于 是来自总体 的简单随机样本.故 独立同分布,且与 有相同分布,从而 也是独立同分布,且
于是,根据独立同分布的林德伯格-列维中心极限定理,得
即
亦即 近似服从标准正态分布 ,故当n充分大时,近似地有
本题其实是数理统计中,大样本场合下统计量 得渐进分布得计算问题,这类问题在求统计量的抽样分布时是经常出现的,关键是利用独立同分布的中心极限定理来求它们的近似分布.
全部回答
- 1楼网友:舊物识亽
- 2021-02-17 13:52
这种题要用中值定理来解!!
中值定理是f(a)>0 f(b)<0,那么在a和b之间必有一个根,
根据这个这道题就简单了,
我们只要找到a,b就行了,
令F(x)=x^3+x-e^x;
有F(1)=2-e<0;
F(2)=8+2-e^2>0
所以,在(1,2)上必有一个值使得F(x)=x^3+x-e^x=0,即(x^3)+x=e^x
中值定理是f(a)>0 f(b)<0,那么在a和b之间必有一个根,
根据这个这道题就简单了,
我们只要找到a,b就行了,
令F(x)=x^3+x-e^x;
有F(1)=2-e<0;
F(2)=8+2-e^2>0
所以,在(1,2)上必有一个值使得F(x)=x^3+x-e^x=0,即(x^3)+x=e^x
- 2楼网友:低血压的长颈鹿
- 2021-02-17 13:43
另f(x)=(x^3)+x-e^x
f(0)=-1
f(e)>0
由连续
得f(x)与坐标轴有交点
故有一个正跟
f(0)=-1
f(e)>0
由连续
得f(x)与坐标轴有交点
故有一个正跟
- 3楼网友:走死在岁月里
- 2021-02-17 12:04
f(x)=x^3+x-e^x
f(1)<0,f(5)=64+4-e^4=68-54.6>0
f(1)f(4)<0
1与4之间至少有一个根
f(1)<0,f(5)=64+4-e^4=68-54.6>0
f(1)f(4)<0
1与4之间至少有一个根
- 4楼网友:过活
- 2021-02-17 10:44
令f(x)=(x^3)+x-e^x ,f连续
f(0)=-1<0,f(2)=10-e^2>0 所以f在(0,2)之间至少有一个零点 因(0,2)之间数都大于0
所以(x^3)+x=e^x至少存在一个正实根
f(0)=-1<0,f(2)=10-e^2>0 所以f在(0,2)之间至少有一个零点 因(0,2)之间数都大于0
所以(x^3)+x=e^x至少存在一个正实根
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯