永发信息网

原子吸收光谱分析的干扰有哪些?如何消除

答案:7  悬赏:10  手机版
解决时间 2021-03-23 13:50
  • 提问者网友:我没有何以琛的痴心不悔
  • 2021-03-22 17:38
原子吸收光谱分析的干扰有哪些?如何消除
最佳答案
  • 五星知识达人网友:逐風
  • 2021-03-22 18:48
原子吸收光谱是分析化学领域中一种极其重要的分析方法,已广泛用于冶金工业.吸收原子吸收光谱法是利用被测元素的基态原子特征辐射线的吸收程度进行定量分析的方法.既可进行某些常量组分测定,又能进行ppm、ppb级微量测定,可进行钢铁中低含量的Cr、Ni、Cu、Mn、Mo、Ca、Mg、Als、Cd、Pb、Ad;原材料、铁合金中的K2O、Na2O、MgO、Pb、Zn、Cu、Ba、Ca等元素分析及一些纯金属(如Al、Cu)中残余元素的检测.干扰及其消除方法有:
物理干扰
  物理干扰是指试样在转移、蒸发过程中任何物理因素变化而引起的干扰效应.属于这类干扰的因素有:试液的粘度、溶剂的蒸汽压、雾化气体的压力等.物理干扰是非选择性干扰,对试样各元素的影响基本是相似的.
  配制与被测试样相似的标准样品,是消除物理干扰的常用的方法.在不知道试样组成或无法匹配试样时,可采用标准加入法或稀释法来减小和消除物理干扰.
化学干扰
  化学干扰是指待测元素与其它组分之间的化学作用所引起的干扰效应,它主要影响待测元素的原子化效率,是原子吸收分光光度法中的主要干扰来源.它是由于液相或气相中被测元素的原子与干扰物质组成之间形成热力学更稳定的化合物,从而影响被测元素化合物的解离及其原子化.
  消除化学干扰的方法有:化学分离;使用高温火焰;加入释放剂和保护剂;使用基体改进剂等.
电离干扰
  在高温下原子电离,使基态原子的浓度减少,引起原子吸收信号降低,此种干扰称为电离干扰.电离效应随温度升高、电离平衡常数增大而增大,随被测元素浓度增高而减小.加入更易电离的碱金属元素,可以有效地消除电离干扰.
光谱干扰
  光谱干扰包括谱线重叠、光谱通带内存在非吸收线、原子化池内的直流发射、分子吸收、光散射等.当采用锐线光源和交流调制技术时,前3种因素一般可以不予考虑,主要考虑分子吸收和光散射地影响,它们是形成光谱背景的主要因素.
分子吸收干扰
  分子吸收干扰是指在原子化过程中生成的气体分子、氧化物及盐类分子对辐射吸收而引起的干扰.光散射是指在原子化过程中产生的固体微粒对光产生散射,使被散射的光偏离光路而不为检测器所检测,导致吸光度值偏高.
全部回答
  • 1楼网友:未来江山和你
  • 2021-03-22 22:20
方法/步骤
物理干扰产生的原因
在火焰原子吸收中,试样溶液的性质发生任何变化,都直接或间接的影响原子阶级效率。如试样的粘度生生变化时,则影响吸喷速率进而影响雾量和雾化交率。毛细管的内径和长度以及空气的流量同样影响吸喷速率。试样的表面张力和粘度的变化,将影响雾滴的细度、脱溶剂效率和蒸发效率,最终影响到原子化效率。当试样中存在大量的基体元素时,它们在火焰中蒸发解离时,不仅要消耗大量的热量,而且在蒸发过程中,有可能包裹待测元素,延缓待测元素的蒸发、影响原子化效率。物理干扰一般都是负干扰,最终影响火焰分析体积中原子的密度。
消除物理干扰的方法
为消除物理干扰,保证分析的准确度,一般采用以下方法:
a 配制与待测试液基体相一致的标准溶液,这是最常用的方法。
b 当配制与待测试液基体相一致的标准溶液有困难时,需采用标准加入法。
c 当被测元素在试液中浓度较高时,可以用稀释溶液的方法来降低或消除物理干扰。
光谱干扰及其消除方法
原子吸收光谱分析中的光谱干扰较原子发射光谱要少得多。理想的原子吸收,应该是在所选用的光谱通带内仅有光源的一条共振发射线和波长与之对应的一条吸收线。当光谱通带内多于一条吸收线或光谱通带内存在光源发躬垢非吸收线时,灵敏度降低且工作曲线线性范围变窄。当被测试液中含有吸收线相重叠的两种元素时,无论测哪一种都将产生干扰。
a 光谱通带内多于一条吸收线
如果在光谱内存在光源的几条发射线,而且被测元素对这几种辐射光均产生吸收,这就产生干扰。也就是所谓的多重谱线干扰,以过渡元素较多。若多重吸收线和主吸收线波长差不是很小时,通过减小狭缝来克服多重谱线的干扰。但波长差很多小时,通过减小狭缝仍难消除干扰,并且可能使信噪比大大降低,此时需别选谱线。
b 光谱通带内存在光源发射的非吸收线
待测元素的非吸收线出现在光谱通带内,这非吸收线可以是待测元素的谱线,也可能是其它元素的谱线.此时产生的干扰使灵敏度降低和工作曲线弯曲。造成这种干扰的原因有几种:
1 具有复杂光谱的元素本身就发射出单色器难以分开的谱线;
2 多元素空芯阴极灯因发射线较复杂而存在非吸收干扰;
3 光源阴极材料中的杂质所引起的非吸收干扰;
4 光源填充的惰性气体的辐射线引起的非吸收干扰。
克服这种干扰常用方法是减小狭缝宽度,使光谱通带小到步以分离掉非吸收线,但使信噪比变坏。这时可以改用其它分析线,虽灵敏度较低,但允许较大的光谱通带,有利于提高信噪比。
吸收线重叠干扰
火焰中有两种以上原子的吸收线与光源发射的分析线相重叠时产生邻近线干扰,这种干扰使结果偏高。当分析元素的吸收线和共存元素的吸收线完全重叠,而分析元素的含量很低时,测得的只是共存元素的吸收信号。当分析元素的分析线中心位置和共存元素的吸收线的中心位置稍有偏离,但仍有相当程度的重叠,此时得于的吸收信号仍有很大一部分是共存元素产生的。当共存元素的吸收线和分析元素的吸收线稍有重叠时,吸收信号中仍有小部分是共存元素产生的。只有分析元素的吸收线和共存元素的吸收线完全分离时,共存元素才不产生干扰。Co253.649对Hg253.652r的干扰是典型的吸收线重叠干扰。
理论研究和实验结果表明,干扰的大小取决于吸收线重叠程度,干扰元素的浓度及其灵敏度。当两种元素的吸收线的波长差小于0.03nm时,则认为吸收线重叠干扰是严重的。若重叠的吸收线是灵敏线,即使相差0.1nm,干扰也会明显表现出来。当然这种干扰还和干扰元素的浓度及单色仪的分辨率有关。有一些谱线,在理论上是重叠线,但实验中并没有观察到干扰。有可能是干扰元素在测定条件下原子化效率低而未能产生足够的基态原子,也可能这些干扰元素的吸收线灵敏度很低,所以在通常情况下表现不出来。消除这种干扰一般是选用其它的分析线或预分离干扰元素。
  • 2楼网友:酒醒三更
  • 2021-03-22 21:01
物理干扰产生的原因
在火焰原子吸收中,试样溶液的性质发生任何变化,都直接或间接的影响原子阶级效率。如试样的粘度生生变化时,则影响吸喷速率进而影响雾量和雾化交率。毛细管的内径和长度以及空气的流量同样影响吸喷速率。试样的表面张力和粘度的变化,将影响雾滴的细度、脱溶剂效率和蒸发效率,最终影响到原子化效率。当试样中存在大量的基体元素时,它们在火焰中蒸发解离时,不仅要消耗大量的热量,而且在蒸发过程中,有可能包裹待测元素,延缓待测元素的蒸发、影响原子化效率。物理干扰一般都是负干扰,最终影响火焰分析体积中原子的密度。
消除物理干扰的方法
为消除物理干扰,保证分析的准确度,一般采用以下方法:
a 配制与待测试液基体相一致的标准溶液,这是最常用的方法。
b 当配制与待测试液基体相一致的标准溶液有困难时,需采用标准加入法。
c 当被测元素在试液中浓度较高时,可以用稀释溶液的方法来降低或消除物理干扰。
光谱干扰及其消除方法
原子吸收光谱分析中的光谱干扰较原子发射光谱要少得多。理想的原子吸收,应该是在所选用的光谱通带内仅有光源的一条共振发射线和波长与之对应的一条吸收线。当光谱通带内多于一条吸收线或光谱通带内存在光源发躬垢非吸收线时,灵敏度降低且工作曲线线性范围变窄。当被测试液中含有吸收线相重叠的两种元素时,无论测哪一种都将产生干扰。
a 光谱通带内多于一条吸收线
如果在光谱内存在光源的几条发射线,而且被测元素对这几种辐射光均产生吸收,这就产生干扰。也就是所谓的多重谱线干扰,以过渡元素较多。若多重吸收线和主吸收线波长差不是很小时,通过减小狭缝来克服多重谱线的干扰。但波长差很多小时,通过减小狭缝仍难消除干扰,并且可能使信噪比大大降低,此时需别选谱线。
b 光谱通带内存在光源发射的非吸收线
待测元素的非吸收线出现在光谱通带内,这非吸收线可以是待测元素的谱线,也可能是其它元素的谱线.此时产生的干扰使灵敏度降低和工作曲线弯曲。造成这种干扰的原因有几种:
1 具有复杂光谱的元素本身就发射出单色器难以分开的谱线;
2 多元素空芯阴极灯因发射线较复杂而存在非吸收干扰;
3 光源阴极材料中的杂质所引起的非吸收干扰;
4 光源填充的惰性气体的辐射线引起的非吸收干扰。
克服这种干扰常用方法是减小狭缝宽度,使光谱通带小到步以分离掉非吸收线,但使信噪比变坏。这时可以改用其它分析线,虽灵敏度较低,但允许较大的光谱通带,有利于提高信噪比。
吸收线重叠干扰
火焰中有两种以上原子的吸收线与光源发射的分析线相重叠时产生邻近线干扰,这种干扰使结果偏高。当分析元素的吸收线和共存元素的吸收线完全重叠,而分析元素的含量很低时,测得的只是共存元素的吸收信号。当分析元素的分析线中心位置和共存元素的吸收线的中心位置稍有偏离,但仍有相当程度的重叠,此时得于的吸收信号仍有很大一部分是共存元素产生的。当共存元素的吸收线和分析元素的吸收线稍有重叠时,吸收信号中仍有小部分是共存元素产生的。只有分析元素的吸收线和共存元素的吸收线完全分离时,共存元素才不产生干扰。Co253.649对Hg253.652r的干扰是典型的吸收线重叠干扰。
理论研究和实验结果表明,干扰的大小取决于吸收线重叠程度,干扰元素的浓度及其灵敏度。当两种元素的吸收线的波长差小于0.03nm时,则认为吸收线重叠干扰是严重的。若重叠的吸收线是灵敏线,即使相差0.1nm,干扰也会明显表现出来。当然这种干扰还和干扰元素的浓度及单色仪的分辨率有关。有一些谱线,在理论上是重叠线,但实验中并没有观察到干扰。有可能是干扰元素在测定条件下原子化效率低而未能产生足够的基态原子,也可能这些干扰元素的吸收线灵敏度很低,所以在通常情况下表现不出来。消除这种干扰一般是选用其它的分析线或预分离干扰元素。
  • 3楼网友:千夜
  • 2021-03-22 19:29
原子吸收光谱是分析化学领域中一种极其重要的分析方法,已广泛用于冶金工业.吸收原子吸收光谱法是利用被测元素的基态原子特征辐射线的吸收程度进行定量分析的方法.既可进行某些常量组分测定,又能进行ppm、ppb级微量测定,可进行钢铁中低含量的Cr、Ni、Cu、Mn、Mo、Ca、Mg、Als、Cd、Pb、Ad;原材料、铁合金中的K2O、Na2O、MgO、Pb、Zn、Cu、Ba、Ca等元素分析及一些纯金属(如Al、Cu)中残余元素的检测.干扰及其消除方法有:
物理干扰
  物理干扰是指试样在转移、蒸发过程中任何物理因素变化而引起的干扰效应.属于这类干扰的因素有:试液的粘度、溶剂的蒸汽压、雾化气体的压力等.物理干扰是非选择性干扰,对试样各元素的影响基本是相似的.
  配制与被测试样相似的标准样品,是消除物理干扰的常用的方法.在不知道试样组成或无法匹配试样时,可采用标准加入法或稀释法来减小和消除物理干扰.
化学干扰
  化学干扰是指待测元素与其它组分之间的化学作用所引起的干扰效应,它主要影响待测元素的原子化效率,是原子吸收分光光度法中的主要干扰来源.它是由于液相或气相中被测元素的原子与干扰物质组成之间形成热力学更稳定的化合物,从而影响被测元素化合物的解离及其原子化.
  消除化学干扰的方法有:化学分离;使用高温火焰;加入释放剂和保护剂;使用基体改进剂等.
电离干扰
  在高温下原子电离,使基态原子的浓度减少,引起原子吸收信号降低,此种干扰称为电离干扰.电离效应随温度升高、电离平衡常数增大而增大,随被测元素浓度增高而减小.加入更易电离的碱金属元素,可以有效地消除电离干扰.
光谱干扰
  光谱干扰包括谱线重叠、光谱通带内存在非吸收线、原子化池内的直流发射、分子吸收、光散射等.当采用锐线光源和交流调制技术时,前3种因素一般可以不予考虑,主要考虑分子吸收和光散射地影响,它们是形成光谱背景的主要因素.
分子吸收干扰
  分子吸收干扰是指在原子化过程中生成的气体分子、氧化物及盐类分子对辐射吸收而引起的干扰.光散射是指在原子化过程中产生的固体微粒对光产生散射,使被散射的光偏离光路而不为检测器所检测,导致吸光度值偏高.
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯