计算积分∫1/1+(sinx)^2 dx上下限0到2π
答案:2 悬赏:0 手机版
解决时间 2021-01-27 19:32
- 提问者网友:伴风望海
- 2021-01-27 00:51
计算积分∫1/1+(sinx)^2 dx上下限0到2π
最佳答案
- 五星知识达人网友:几近狂妄
- 2021-01-27 01:26
1/1+(sinx)^2
=1/[((sinx)^2+(cosx)^2)+(sinx)^2]
=1/[2(sinx)^2+(cosx)^2]
=(1/(cosx)^2) /[1+2(tanx)^2]
=(secx)^2 /[1+2(tanx)^2]
所以
原积分=4∫(0->π/2) (secx)^2 /[1+2(tanx)^2] dx
=4∫d(tanx)//[1+2(tanx)^2]
=2√2arctan[√2tanx] |(0,π/2)
=2√2(π/2-0)=√2π
=1/[((sinx)^2+(cosx)^2)+(sinx)^2]
=1/[2(sinx)^2+(cosx)^2]
=(1/(cosx)^2) /[1+2(tanx)^2]
=(secx)^2 /[1+2(tanx)^2]
所以
原积分=4∫(0->π/2) (secx)^2 /[1+2(tanx)^2] dx
=4∫d(tanx)//[1+2(tanx)^2]
=2√2arctan[√2tanx] |(0,π/2)
=2√2(π/2-0)=√2π
全部回答
- 1楼网友:一把行者刀
- 2021-01-27 02:24
∫[0,π]√(1-sinx) dx
=∫[0,π]√(sin^2(x/2)+cos^2(x/2)-2sin(x/2)cos(x/2)) dx
=∫[0,π]√[(sin(x/2)-cos(x/2)]^2dx
=∫[0,π/4][cos(x/2)-sin(x/2)]dx+∫[π/4,π][sin(x/2)-cos(x/2)]dx
=2[sin(x/2)+cos(x/2)][0,π/4]-2[sin(x/2)+cos(x/2)][π/4,π]
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯