求[ln(x+√(1+x²)]/(1+x²)^3/2不定积分
答案:4 悬赏:30 手机版
解决时间 2021-11-29 17:30
- 提问者网友:动次大次蹦擦擦
- 2021-11-29 14:01
求[ln(x+√(1+x²)]/(1+x²)^3/2不定积分
最佳答案
- 五星知识达人网友:毛毛
- 2021-11-29 15:35
全部回答
- 1楼网友:拜訪者
- 2021-11-29 18:11
令 x = tanu,
I = ∫ln(tanu+secu)(secu)^2du/(secu)^3
= ∫cosuln(tanu+secu)du = ∫ln(tanu+secu)dsinu
= sinuln(tanu+secu) - ∫sinu[(secu)^2+secutanu]du/(tanu+secu)
= sinuln(tanu+secu) - ∫sinusecudu
= sinuln(tanu+secu) - ∫sinudu/cosu
= sinuln(tanu+secu) + ln|cosu| + C
= xln[x+√(1+x^2)]/√(1+x^2) - (1/2)ln(1+x^2) + C
I = ∫ln(tanu+secu)(secu)^2du/(secu)^3
= ∫cosuln(tanu+secu)du = ∫ln(tanu+secu)dsinu
= sinuln(tanu+secu) - ∫sinu[(secu)^2+secutanu]du/(tanu+secu)
= sinuln(tanu+secu) - ∫sinusecudu
= sinuln(tanu+secu) - ∫sinudu/cosu
= sinuln(tanu+secu) + ln|cosu| + C
= xln[x+√(1+x^2)]/√(1+x^2) - (1/2)ln(1+x^2) + C
- 2楼网友:迷人又混蛋
- 2021-11-29 17:16
三角换元脱根号,令x=tanu
=∫ln(tanu+secu)/sec³udtanu
=∫cosuln(tanu+secu)du
=∫ln(tanu+secu)dsinu
=sinuln(tanu+secu)-∫sinusecudu
=sinuln(tanu+secu)-lnsecu+C
=∫ln(tanu+secu)/sec³udtanu
=∫cosuln(tanu+secu)du
=∫ln(tanu+secu)dsinu
=sinuln(tanu+secu)-∫sinusecudu
=sinuln(tanu+secu)-lnsecu+C
- 3楼网友:第幾種人
- 2021-11-29 17:08
∫ ln[x+√(1+x^2)]/ (1+x^2)^(3/2) dx
x= tanu
dx = (secu)^2 du
∫ ln[x+√(1+x^2)]/ (1+x^2)^(3/2) dx
=∫ { ln(tanu +secu)/ (secu)^3 } [ (secu)^2 du]
=∫ [ ln(tanu +secu)/ secu ] du
=∫ cosu [ ln(sinu +1) - ln|cosu| ] du
=∫ [ ln(sinu +1) - ln|cosu| ] dsinu
= sinu.[ ln(sinu +1) - ln|cosu| ] - ∫ sinu.[ cosu/(sinu +1) + sinu/cosu ] du
= sinu.[ ln(sinu +1) - ln|cosu| ] - ∫ [sinu/(sinu +1)] dsinu - ∫ [1- (cosu)^2]/cosu du
= sinu.[ ln(sinu +1) - ln|cosu| ] - ∫ [ 1- 1/(sinu +1)] dsinu - ∫ (secu- cosu ) du
= sinu.[ ln(sinu +1) - ln|cosu| ] - [ sinu- ln|sinu +1| ] - ln|secu+tanu| +sinu + C
= sinu.[ ln(sinu +1) - ln|cosu| ] + ln|sinu +1| ] - ln|secu+tanu| + C
= sinu.[ ln(sinu +1) - ln|cosu| ] + ln|(sinu +1)/(secu+tanu)| + C
= sinu.[ ln(sinu +1) - ln|cosu| ] - ln|cosu| + C
=[x/√(1+x^2)] . [ ln(x/√(1+x^2) +1) +(1/2)ln(1+x^2) ] + (1/2)ln(1+x^2) + C
where
x= tanu
sinu = x/√(1+x^2)
cosu =1/√(1+x^2)
x= tanu
dx = (secu)^2 du
∫ ln[x+√(1+x^2)]/ (1+x^2)^(3/2) dx
=∫ { ln(tanu +secu)/ (secu)^3 } [ (secu)^2 du]
=∫ [ ln(tanu +secu)/ secu ] du
=∫ cosu [ ln(sinu +1) - ln|cosu| ] du
=∫ [ ln(sinu +1) - ln|cosu| ] dsinu
= sinu.[ ln(sinu +1) - ln|cosu| ] - ∫ sinu.[ cosu/(sinu +1) + sinu/cosu ] du
= sinu.[ ln(sinu +1) - ln|cosu| ] - ∫ [sinu/(sinu +1)] dsinu - ∫ [1- (cosu)^2]/cosu du
= sinu.[ ln(sinu +1) - ln|cosu| ] - ∫ [ 1- 1/(sinu +1)] dsinu - ∫ (secu- cosu ) du
= sinu.[ ln(sinu +1) - ln|cosu| ] - [ sinu- ln|sinu +1| ] - ln|secu+tanu| +sinu + C
= sinu.[ ln(sinu +1) - ln|cosu| ] + ln|sinu +1| ] - ln|secu+tanu| + C
= sinu.[ ln(sinu +1) - ln|cosu| ] + ln|(sinu +1)/(secu+tanu)| + C
= sinu.[ ln(sinu +1) - ln|cosu| ] - ln|cosu| + C
=[x/√(1+x^2)] . [ ln(x/√(1+x^2) +1) +(1/2)ln(1+x^2) ] + (1/2)ln(1+x^2) + C
where
x= tanu
sinu = x/√(1+x^2)
cosu =1/√(1+x^2)
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯