永发信息网

矛盾的辨证关系

答案:2  悬赏:0  手机版
解决时间 2021-05-01 04:29
  • 提问者网友:了了无期
  • 2021-04-30 16:23
矛盾的辨证关系
最佳答案
  • 五星知识达人网友:春色三分
  • 2021-04-30 17:09
反证法 反证法是数学中常用的一种方法,而且有些命题只能用它去证明。这里作一简单介绍。用反证法证明一个命题常采用以下步骤:

1) 假定命题的结论不成立,

2) 进行推理,在推理中出现下列情况之一:与已知条件矛盾;与公理或定理矛盾,

3) 由于上述矛盾的出现,可以断言,原来的假定“结论不成立”是错误的。

4) 肯定原来命题的结论是正确的。

用反证法证明命题实际上是这样一个思维过程:我们假定“结论不成立“,结论一不成立就会出毛病,这个毛病是通过与已知条件矛盾;与公理或定理矛盾的方式暴露出来的。这个毛病是怎么造成的呢?推理没有错误,已知条件,公理或定理没有错误,这样一来,唯一有错误的地方就是一开始的假定。”结论不成立“与”结论成立“必然有一个正确。既然“结论不成立”有错误,就肯定结论必然成立了。

反证法也称为归谬法。英国数学家哈代(G.H.Hardy,1877-1947)对于这种证法给过一个很有意思的评论。在棋类比赛中,经常采用一种策略,叫“弃子取势”,即牺牲一些棋子以换取优势。哈代指出,归谬法是远比任何棋术更为高超的一种策略。棋手可以牺牲的是几个棋子,而数学家可以牺牲的整个一盘棋。归谬法就是作为一种可以想象的最了不起的策略而产生的。

我们来证明定理1和定理4的互逆性。需要证明两个命题:

(1) 由定理1的成立得出定理4的成立;

(2) 由定理4的成立得出定理1的成立;

证明(1)。用反证法。从否定定理4 的结论开始。假定有 ,那么根据定理1应当有 ,而这与定理4的条件矛盾。所要的矛盾找到了。定理的正确性得证。

思考题 读者自己证明,由定理4的成立得出定理1的成立。

我们用集合的观点作些说明。设

{在闭区间上的连续函数}; ={在闭区间上取得最值的函数}。

这是两个不同的集合。上面的定理告诉我们,


即 是 的子集(图2)。一个函数不在 中,一定不在 中,这就是逆否定理。它与正定理同真同假。

同样的道理,逆定理与否定理同真同假。

思考题 证明,逆定理与否定理同真同假。

弄清定理的结构和定理的四种形式是重要的,为下面的充要条件研究作好了准备。但这只是问题的一个方面。要学好定理,我们还需要考虑以下五个问题:怎样证明定理,怎样推广定理,怎样运用定理,怎样理解定理(资料来源于baidu)
全部回答
  • 1楼网友:荒野風
  • 2021-04-30 18:28
分析矛盾、缓解矛盾、解决矛盾、防止矛盾.
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯