过圆x²﹢y²﹣x﹢y﹣2=0和x²﹢y²=5的交点,且圆心在直线3x﹢4y-1=0上的圆的方程
过圆x²﹢y²﹣x﹢y﹣2=0和x²﹢y²=5的交点,且圆心在直线3x﹢4y-1
答案:2 悬赏:20 手机版
解决时间 2021-12-30 17:05
- 提问者网友:暮烟疏雨之际
- 2021-12-30 04:18
最佳答案
- 五星知识达人网友:洎扰庸人
- 2021-12-30 05:42
设所求的圆为:(x²﹢y²﹣x﹢y﹣2)+k(x²﹢y²-5)=0
(1+k)x^2+(1+k)y^2-x+y-2-5k=0
圆心为(1/2(1+k),-1/2(1+k))
代入直线:3/2(1+k)-4/2(1+k)-1=0
-1/2(1+k)=1
2+2k=-1
k=-3/2
所以圆为:-1/2 x^2-1/2y^2-x+y-2+15/2=0
即x^2+y^2+2x-2y-11=0
全部回答
- 1楼网友:毛毛
- 2021-12-30 06:54
感谢回答,我学习了
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯