日本数学竞赛题
答案:1 悬赏:10 手机版
解决时间 2021-02-16 00:41
- 提问者网友:兔牙战士
- 2021-02-15 05:32
日本数学竞赛题
最佳答案
- 五星知识达人网友:低音帝王
- 2021-02-15 07:06
120
做为猜答案的话,既然题中没有给出E点的具体比例,说明在任意点都成立。那么,设E与D重合,则AE=1/2BC,故△ABC为直角三角形,∠A=90,而EF就是DC,AF,就是AC,故△AEF为等边三角形,故∠ADB=120。
猜出了答案就可以想办法来证明了。
在AD上取一点A1,使得A1D=AE,
易知A1BC为直角三角形,∠A1=90,AA1=DE。
过C做BE的平行线交于AD延长线于G。
因为CG平行EF,而EF=AF,故AC=GC,故∠A1AC=∠DGC
又因为△BDE与△CDG全等,所以DG=ED=AA1
所以△CDG与CA1A全等,所以DC=A1C
所以△A1DC为正三角形,所以∠A1DC=60,∠ADB=120
这题我不久前就证过了
做为猜答案的话,既然题中没有给出E点的具体比例,说明在任意点都成立。那么,设E与D重合,则AE=1/2BC,故△ABC为直角三角形,∠A=90,而EF就是DC,AF,就是AC,故△AEF为等边三角形,故∠ADB=120。
猜出了答案就可以想办法来证明了。
在AD上取一点A1,使得A1D=AE,
易知A1BC为直角三角形,∠A1=90,AA1=DE。
过C做BE的平行线交于AD延长线于G。
因为CG平行EF,而EF=AF,故AC=GC,故∠A1AC=∠DGC
又因为△BDE与△CDG全等,所以DG=ED=AA1
所以△CDG与CA1A全等,所以DC=A1C
所以△A1DC为正三角形,所以∠A1DC=60,∠ADB=120
这题我不久前就证过了
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯