永发信息网

利用huffman树实现文件的压缩与解压

答案:2  悬赏:40  手机版
解决时间 2021-03-06 23:23
  • 提问者网友:浩歌待明月
  • 2021-03-06 17:29
只学过C,不过C++也看懂,能有注释就更好了

拜托了~~~~~~~~~
最佳答案
  • 五星知识达人网友:怙棘
  • 2021-03-06 17:46
这是本人写的动态哈夫曼压缩算法实现,压缩与解压缩时,
根据文件内容自动生成哈夫曼树,并动态调整节点的权重
和树的形状。900MHZ的PIII赛扬每秒钟可以压缩的好几MB
的数据,只是压缩率不高,文本文件的压缩后容量一般可
以减少25%,比RAR差远了。

源文件共三个,你在VC6.0中新建一个空的命令行项目,
将它们加进去,编译完就可以用了。

===========hfm.cpp===================

#include
#include
#include
#include
#include
#include "Huffman.h"

int wh;
int rh;

bool Write(unsigned char *s,int len){
_write(wh,s,len);
return true;
}

bool OpenFile(char* source,char* target){
int w_flag=_O_WRONLY | _O_CREAT | _O_EXCL | _O_BINARY;
int r_flag=_O_RDONLY | _O_BINARY;

rh=_open(source,r_flag,_S_IREAD | _S_IWRITE);
wh=_open(target,w_flag,_S_IREAD | _S_IWRITE);

if(rh==-1 || wh==-1){
if(rh!=-1){
_close(rh);
printf("\n打开文件:'%s'失败!",target);
}
if(wh!=-1){
_close(wh);
printf("\n打开文件:'%s'失败!",source);
}

return false;
}else{
return true;
}
}

void PrintUsage(){
printf("\n以动态哈夫曼算法压缩或解压缩文件。\n\n");
printf("\thfm -?\t\t\t\t显示帮助信息\n");
printf("\thfm -e -i source -o target\t压缩文件\n");
printf("\thfm -d -i source -o target\t解压缩文件\n\n");
}

void main(int argc,char *args[]){
int mode,i,j,K=0;
char src[4096];
char target[4096];
unsigned char buffer[BUFFER_SIZE];
Huffman *h;

mode=0;
for(i=1;i=argc){
mode=0;
}else{//输出文件
j=0;
while(args[i+1][j]!='\0' && j<4096){
target[j++]=args[i+1][j];
}
if(j==4096){
mode=0;
}else{
target[j]='\0';
K |= 1;
}
}
break;
case 'i':
case 'I':
if(i+1>=argc){
mode=0;
}else{//输入文件
j=0;
while(args[i+1][j]!='\0' && j<4096){
src[j++]=args[i+1][j];
}
if(j==4096){
mode=0;
}else{
src[j]='\0';
K |=2;
}
}
break;
}
}
}

if(K!=3)mode=0;

switch(mode){
case 0:
PrintUsage();
return;
case 1://压缩
if(!OpenFile(src,target))return;
h=new Huffman(&Write,true);
i=BUFFER_SIZE;
while(i==BUFFER_SIZE){
i=_read(rh,buffer,BUFFER_SIZE);
h->Encode(buffer,i);
}
delete h;
_close(rh);
_close(wh);
printf("压缩完毕!");
break;
case 2://解压缩
if(!OpenFile(src,target))return;
h=new Huffman(&Write,false);
i=BUFFER_SIZE;
while(i==BUFFER_SIZE){
i=_read(rh,buffer,BUFFER_SIZE);
h->Decode(buffer,i);
}
delete h;
_close(rh);
_close(wh);
printf("解压缩完毕!");
break;
}

}

=======end of hfm.cpp=======================

=======Huffman.cpp=============================
// Huffman.cpp: implementation of the Huffman class.
//
//////////////////////////////////////////////////////////////////////

#include "Huffman.h"

//////////////////////////////////////////////////////////////////////
// Construction/Destruction
//////////////////////////////////////////////////////////////////////

Huffman::Huffman(Output *output,bool mode)
{
Hbtree *tmp;
int i;

this->mode=mode;

//设置输出函数,当缓冲区满时,将调用该函数输出
this->output=output;

//初始化列表
for(i=0;ilist[i]=NULL;

//初始化哈夫曼树
this->root=this->NewNode(NOT_CHAR,LEFT,NULL);
this->current=this->root;
tmp=this->NewNode(CODE_ESCAPE,RIGHT,root);
tmp->count=1;
tmp=this->NewNode(CODE_FINISH,LEFT,root);
tmp->count=0;
root->count=root->child[LEFT]->count+root->child[RIGHT]->count;

//设置缓冲区指针
this->char_top=BOTTOM_BIT;
this->bit_top=TOP_BIT;
this->buffer[0]=0;

//重构哈夫曼树的最大计数值
this->max_count=MAX_COUNT;
this->shrink_factor=SHRINK_FACTOR;
this->finished=false;
}

Huffman::~Huffman()
{
if(this->mode==true){//如果是编码
//输出结束码
this->OutputEncode(CODE_FINISH);
this->char_top++;
}

//强制清空缓冲区
this->Flush();

//释放空间
this->ReleaseNode(this->root);
}

Hbtree * Huffman::NewNode(int value, int index, Hbtree *parent)
{
Hbtree *tmp=new Hbtree;
tmp->parent=parent;
tmp->child[0]=NULL;
tmp->child[1]=NULL;
tmp->count=(1 << SHRINK_FACTOR);
tmp->index=(index==0) ? 0 : 1;
tmp->value=value;

if(value!=NOT_CHAR)this->list[tmp->value]=tmp;
if(parent!=NULL)parent->child[tmp->index]=tmp;
return tmp;
}

void Huffman::ReleaseNode(Hbtree *node)
{
if(node!=NULL){
this->ReleaseNode(node->child[LEFT]);
this->ReleaseNode(node->child[RIGHT]);
delete node;
}
}

//输出一位编码
int Huffman::OutputBit(int bit)
{
unsigned char candidates[]={1,2,4,8,16,32,64,128};

if(bit!=0)
this->buffer[this->char_top] |= candidates[this->bit_top];
this->bit_top--;
if(this->bit_top < BOTTOM_BIT){
this->bit_top=TOP_BIT;
this->char_top++;

if(this->char_top >= BUFFER_SIZE){//输出缓冲区
this->output(this->buffer,BUFFER_SIZE);
this->char_top=0;
}

this->buffer[this->char_top]=0;
}
return 0;
}

//输出缓冲区
int Huffman::Flush()
{
this->output(this->buffer,this->char_top);
this->char_top=0;
return 0;
}

int Huffman::Encode(unsigned char c)
{
int value=c,
candidates[]={128,64,32,16,8,4,2,1},
i;

if(this->list[value]==NULL){//字符不存在于哈夫曼树中
//输出转义码
this->OutputEncode(CODE_ESCAPE);
//输出字符
for(i=0;i<8;i++)this->OutputBit(value & candidates[i]);

this->InsertNewNode(value);

}else{
//输出字符编码
this->OutputEncode(value);

//重新调整哈夫曼树
this->BalanceNode(this->list[value]->parent);
}

//重组哈夫曼树
if(this->root->count>=this->max_count)
this->RearrangeTree();

return 0;
}

void Huffman::BalanceNode(Hbtree *node)
{
Hbtree *parent,*child,*brother;
int i,j;

parent=node->parent;
if(parent==NULL)return;//根节点无需调整

if(node->value==NOT_CHAR){//非叶子节点
child=node->child[LEFT]->count > node->child[RIGHT]->count ?
node->child[LEFT] : node->child[RIGHT];

if(child->count > parent->count - node->count){
//失衡

i=!(node->index);
j=child->index;
node->count=parent->count - child->count;
brother=parent->child[i];

node->child[j]=brother;
brother->index=j;
brother->parent=node;

parent->child[i]=child;
child->index=i;
child->parent=parent;
}
}
this->BalanceNode(parent);
}

//输出一个字符的编码
int Huffman::OutputEncode(int value)
{
int stack[CODE_FINISH+2],top=0;
Hbtree *tmp=this->list[value];

//输出编码
if(value<=MAX_VALUE){//字符
while(tmp!=NULL){
stack[top++]=tmp->index;
tmp->count++;
tmp=tmp->parent;
}
}else{//控制码
while(tmp!=NULL){
stack[top++]=tmp->index;
tmp=tmp->parent;
}
}
top--;
while(top>0){
this->OutputBit(stack[--top]);
}

return 0;
}

void Huffman::PrintNode(Hbtree *node,int level)
{
int i;
if(node){
for(i=0;i printf("%p P:%p L:%p R:%p C:%d",node,node->parent,node->child[0],node->child[1],node->count);
if(node->value!=NOT_CHAR)printf(" V:%d",node->value);
printf("\n");

this->PrintNode(node->child[LEFT],level+1);
this->PrintNode(node->child[RIGHT],level+1);
}
}

int Huffman::Encode(unsigned char *s, int len)
{
int i;
for(i=0;iEncode(s[i]);
return 0;
}

void Huffman::PrintTree()
{
this->PrintNode(this->root,0);
}

int Huffman::RecountNode(Hbtree *node)
{
if(node->value!=NOT_CHAR)return node->count;
node->count=
this->RecountNode(node->child[LEFT]) +
this->RecountNode(node->child[RIGHT]);
return node->count;
}

void Huffman::RearrangeTree()
{
int i,j,k;
Hbtree *tmp,*tmp2;

//所有非控制码的计数值右移shrink_factor位,并删除计数值为零的节点
for(k=0;k<=MAX_VALUE;k++){
if(this->list[k]!=NULL){
tmp=this->list[k];
tmp->count >>= this->shrink_factor;
if(tmp->count ==0){
this->list[k]=NULL;
tmp2=tmp->parent;
i=tmp2->index;
j=!(tmp->index);
if(tmp2->parent!=NULL){
tmp2->parent->child[i]=tmp2->child[j];
tmp2->child[j]->parent=tmp2->parent;
tmp2->child[j]->index=i;
}else{
this->root=tmp2->child[j];
this->current=this->root;
this->root->parent=NULL;
}
delete tmp;
delete tmp2;
}
}
}

//重新计数
this->RecountNode(this->root);

//重新调整平衡
for(i=0;i<=MAX_VALUE;i++){
if(this->list[i]!=NULL)
this->BalanceNode(this->list[i]->parent);
}
}

void Huffman::InsertNewNode(int value)
{
int i;
Hbtree *tmp,*tmp2;

//将字符加入哈夫曼树
tmp2=this->list[CODE_FINISH];
tmp=this->NewNode(NOT_CHAR, tmp2->index, tmp2->parent);
tmp->child[LEFT]=tmp2;
tmp2->index=LEFT;
tmp2->parent=tmp;

tmp2=this->NewNode(value,RIGHT,tmp);
tmp->count=tmp->child[LEFT]->count+tmp->child[RIGHT]->count;
i=tmp2->count;
while((tmp=tmp->parent)!=NULL)tmp->count+=i;
//从底向上调整哈夫曼树
this->BalanceNode(tmp2->parent);
}

int Huffman::Decode(unsigned char c)
{
this->Decode(c,7);
return 0;
}

int Huffman::Decode(unsigned char *s,int len)
{
int i;
for(i=0;iDecode(s[i]);
return 0;
}

int Huffman::Decode(unsigned char c, int start)
{
int value=c,
candidates[]={1,2,4,8,16,32,64,128},
i,j;
Hbtree *tmp;

if(this->finished)return 0;

i=start;
if(this->current==NULL){//转义状态下
while(this->remain >= 0 && i>=0){
if((candidates[i] & value) !=0){
this->literal |= candidates[this->remain];
}
this->remain--;
i--;
}

if(this->remain < 0){//字符输出完毕

//输出字符
this->OutputChar(this->literal);
//将字符插入哈夫曼树
this->InsertNewNode(literal);
//重组哈夫曼树
if(this->root->count>=this->max_count)
this->RearrangeTree();

//设置环境
this->current=this->root;
}
}else{
j=((value & candidates[i])!=0)?1:0;
tmp=this->current->child[j];
i--;
while(tmp->value==NOT_CHAR && i>=0){
j=((value & candidates[i])!=0)?1:0;
tmp=tmp->child[j];
i--;
}

if(tmp->value==NOT_CHAR){//中间节点
this->current=tmp;
}else{
if(tmp->value<=MAX_VALUE){//编码内容
j=tmp->value;
this->OutputChar((unsigned char)j);

//修改计数器
tmp=this->list[j];
while(tmp!=NULL){
tmp->count++;
tmp=tmp->parent;
}
//调整平衡度
this->BalanceNode(this->list[j]->parent);

//重组哈夫曼树
if(this->root->count>=this->max_count)
this->RearrangeTree();

//设置环境
this->current=this->root;
}else{
if(tmp->value==CODE_ESCAPE){//转义码
this->current=NULL;
this->remain=7;
this->literal=0;
}else{//结束码
this->finished=true;
return 0;
}
}
}

}

if(i>=0)this->Decode(c,i);
return 0;
}

int Huffman::OutputChar(unsigned char c)
{
this->buffer[this->char_top++]=c;
if(this->char_top>=BUFFER_SIZE){//输出缓冲区
this->output(this->buffer,BUFFER_SIZE);
this->char_top=0;
}
return 0;
}

========end of Huffman.cpp==================

========Huffman.h============================
// Huffman.h: interface for the Huffman class.
//
//////////////////////////////////////////////////////////////////////

#if !defined(NULL)
#include
#endif

#if !defined(AFX_HUFFMAN_H__B1F1A5A6_FB57_49B2_BB67_6D1764CC04AB__INCLUDED_)
#define AFX_HUFFMAN_H__B1F1A5A6_FB57_49B2_BB67_6D1764CC04AB__INCLUDED_

#if _MSC_VER > 1000
#pragma once
#endif // _MSC_VER > 1000

#define MAX_COUNT 65536 //最大计数值,大于此值时
#define MAX_VALUE 255 //编码的最大值
#define CODE_ESCAPE MAX_VALUE+1 //转义码
#define CODE_FINISH MAX_VALUE+2 //结束码
#define LIST_LENGTH MAX_VALUE+3 //编码列表长度
#define SHRINK_FACTOR 2 //减小的比例,通过右移位实现
#define LEFT 0 //左孩子索引
#define RIGHT 1 //右孩子索引
#define NOT_CHAR -1 //非字符

#define TOP_BIT 7 //字符最高位
#define BOTTOM_BIT 0 //字符最低位
#define BUFFER_SIZE 81920 //缓冲区大小

//输出函数
typedef bool (Output)(unsigned char *s,int len);

//哈夫曼树的节点定义
typedef struct Hnode{
int count;//计数器
int index;//父节点的孩子索引(0--左孩子,1--右孩子)
Hnode* child[2];
Hnode* parent;
int value;
}Hbtree;

class Huffman
{
private:
//输出一个解码的字符
int OutputChar(unsigned char c);
//从指定位置开始解码
int Decode(unsigned char c,int start);
//插入一个新节点
void InsertNewNode(int value);
//重新调整哈夫曼树构型
void RearrangeTree();
//对各节点重新计数
int RecountNode(Hbtree *node);
//打印哈夫曼树节点
void PrintNode(Hbtree *node,int level);
//输出一个值的编码
int OutputEncode(int value);
//调节哈夫曼树节点使之平衡
void BalanceNode(Hbtree *node);
//输出一位编码
int OutputBit(int bit);
//释放哈夫曼树节点
void ReleaseNode(Hbtree *node);
//新建一个节点
Hbtree *NewNode(int value,int index, Hbtree *parent);
//输出函数地址
Output *output;
//哈夫曼树根地址
Hbtree *root;
//哈夫曼编码单元列表
Hbtree *list[LIST_LENGTH];
//输出缓冲区
unsigned char buffer[BUFFER_SIZE];
//缓冲区顶
int char_top,bit_top;
//收缩哈夫曼树参数
int max_count,shrink_factor;
//工作模式,true--编码,false--解码
bool mode;
//解码的当前节点
Hbtree *current;
int remain;//当前字符剩余的位数
unsigned char literal;//按位输出的字符
bool finished;

public:

//解码指定长度的字符串
int Decode(unsigned char *s,int len);
//解码一个字符
int Decode(unsigned char c);
//打印哈夫曼树
void PrintTree();
//编码指定长度的字符串
int Encode(unsigned char *s,int len);
//编码一个字符
int Encode(unsigned char c);
//清空缓冲区
int Flush();

//output指输出函数,mode指工作模式,true--编码,false--解码
Huffman(Output *output,bool mode);

//析构函数
virtual ~Huffman();
};

#endif // !defined(AFX_HUFFMAN_H__B1F1A5A6_FB57_49B2_BB67_6D1764CC04AB__INCLUDED_)

================end of Huffman.h==================

祝你好运!
全部回答
  • 1楼网友:琴狂剑也妄
  • 2021-03-06 19:22
期待看到有用的回答!
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯