永发信息网

圆弧低部直长7米弧高0.75米。求半径是多少

答案:2  悬赏:0  手机版
解决时间 2021-04-05 14:14
  • 提问者网友:你独家记忆
  • 2021-04-05 02:14
圆弧低部直长7米弧高0.75米。求半径是多少
最佳答案
  • 五星知识达人网友:由着我着迷
  • 2021-04-05 03:19
弦长b=7m,弓形高h=0.75m,则园弧半径R:
R=(b²+4h²)/8h=(49+4×0.75²)/(8×0.75)=(49+2.25)/6=51,25/6=8.542m
全部回答
  • 1楼网友:笑迎怀羞
  • 2021-04-05 04:33


已知弓形的高和长(弦长)求弓形的圆弧半径、角度和弧长较易,而已知弓形的高和弧长求弓形的圆弧半径、角度和弓长(弦长)则较难,
1,若已知弓形的高h和长(弦长)AB求弓形的圆弧半径R、角度θ和弧长l
按勾股定理有下式,
(R-h)²+(AB/2)²=R²,
经变换得,R=AB²/8h+h/2
sin(θ/2)=(AB/2)/R,按反三角函数得到θ/2,(用科学计算器计算)和θ,
弧长l=2Rπ×θ/360
例,h=0.75,AB=7,则R=AB²/8h+h/2=187.5+0.35≈8.17
圆弧低部直长7米弧高0.75米。半径约是8.17.




sin(θ/2)=(AB/2)/R=3.5/8.17=0.43,θ/2=25.36°,θ=45 .72°,
弧长l=2Rπ×θ/360=153.97。


2若已知弓形的高h和弧长l0求弓形的圆弧半径R、角度θ和弓形的长(弦长)AB
这的确较难,可用尝试—逐步逼近法求解。


一种实用的求解方法——
作CD⊥MN,垂足为K,并使CK=h,在C处订一钉子
用竹片或其它有弹性的物质按弧长l做一弓形,弓形的中点套在C处,两端定在MN上的两点A、B,且使AK=BK,得AB的长,连AC、BC,应有AC=BC,作AC的中垂线和BC的中垂线与CD,三线交于一点O,则
OC=半径R,
按(R-h)²+(AB/2)²=R²,初步检验
按(1)给出的方法,求得弧长l=2Rπ×θ/360与所给弧长l0进行对比若无误差,则为所求结果;若为正误差=l-l0>0,则适当减小R与AB的值;若为负误差=l-l0<0,则适当加大R与AB的值,重新计算做到基本上无误差,即得所求结果。
例,h=15,AB=150,
在给出的实例中,高h=15,弧长l0=200,
设AB=195,则R=AB²/8h+h/2=324.375,
sin(θ/2)=(AB/2)/R=52/173,θ/2=17 .4923°,θ=34 .985°,
弧长l=2Rπ×θ/360=198.06,误差=198.06-200=-1.94;
设AB=196.0,则R=AB²/8h+h/2=327.6333,
sin(θ/2)=(AB/2)/R=0 .299115,θ/2=17 .40446°,θ=34 .8089°
弧长l=2Rπ×θ/360=199.05,误差=199.05-200=-0.95;
设AB=197,则R=AB²/8h+h/2=330.9083,
sin(θ/2)=(AB/2)/R=0.2976655,θ/2=17 .3174°,θ=34 .635°
弧长l=2Rπ×θ/360=200.0,误差=200.0-200=0.0
∴半径R=330.9083,弓形的长(弦长)AB=197,弓形的中心角θ=34 .635°。
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯