高中函数题 急~~谢谢~~
答案:1 悬赏:40 手机版
解决时间 2021-07-31 12:06
- 提问者网友:趣果有间
- 2021-07-31 03:23
高中函数题 急~~谢谢~~
最佳答案
- 五星知识达人网友:玩家
- 2021-07-31 03:53
f(x) 在 -无穷 1 恒有意义,
即 [(1 + 2^x + ....+(n-1)^x + an^x )/ n^x] *n^(x-1) >0
显然n^(x-1) >0
所以要求 (1/n)^x + (2/n)^x + ... + [(n-1)/n]^x + a > 0
(1/n)^x + (2/n)^x + ... + [(n-1)/n]^x 在 -无穷, 1 递减,所以要求 x= 1时〉0即可
1/ n + 2/n +...+(n-1)/n + a >0
=> a > (1-n)/2
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯