解答题某工厂计划出售一种产品,经销人员并不是根据生产成本来确定这种产品的价格,而是通过
答案:2 悬赏:30 手机版
解决时间 2021-04-06 03:19
- 提问者网友:我没有何以琛的痴心不悔
- 2021-04-05 12:37
解答题
某工厂计划出售一种产品,经销人员并不是根据生产成本来确定这种产品的价格,而是通过对经营产品的零售商对于不同的价格情况下他们会进多少货进行调查,通过调查确定了关系式P=-750x+15000,其中P为零售商进货的数量(单位:件),x为零售商支付的每件产品价格(单位:元).现估计生产这种产品每件的材料和劳动生产费用为4元,并且工厂生产这种产品的总固定成本为7000元(固定成本是除材料和劳动费用以外的其他费用),为获得最大利润,工厂应对零售商每件收取多少元?并求此时的最大利润.
最佳答案
- 五星知识达人网友:夜风逐马
- 2021-04-05 14:12
解:设工厂获得的利润为y元.则根据利润等于销售额减去材料和劳动生产费,减去总固定成本可知
y=x?P-4P-7000=(x-4)(-750x+15000)-7000=-750(x2-24x+80)-7000=-750[(x-12)2-64]-7000
当x=12时,y最大.
此时y=41000
∴工厂对零售商每件收取12元,此时最大利润为41万元.解析分析:根据生产这种产品每件的材料和劳动生产费用为4元,并且工厂生产这种产品的总固定成本为7000元,可建立函数关系式,利用配方法可求函数的最值.点评:本题以实际问题为载体,考查函数模型的构建,考查二次函数最值的求解,解题的关键是挖掘本质,抽象出函数模型.
y=x?P-4P-7000=(x-4)(-750x+15000)-7000=-750(x2-24x+80)-7000=-750[(x-12)2-64]-7000
当x=12时,y最大.
此时y=41000
∴工厂对零售商每件收取12元,此时最大利润为41万元.解析分析:根据生产这种产品每件的材料和劳动生产费用为4元,并且工厂生产这种产品的总固定成本为7000元,可建立函数关系式,利用配方法可求函数的最值.点评:本题以实际问题为载体,考查函数模型的构建,考查二次函数最值的求解,解题的关键是挖掘本质,抽象出函数模型.
全部回答
- 1楼网友:第四晚心情
- 2021-04-05 15:07
感谢回答,我学习了
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯