设集合A={a|a=n平方+1,n属于N}集合B={b|b=k平方-4k+5,k属于N,若m属于A,判断m与B的关系.
这是在教学解析看到的.解析中所说 m=n²+1=(n²+4n+4)-4(n+2)+5=(n+2)²-4(n+2)+5.
设集合A={a|a=n平方+1,n属于N}集合B={b|b=k平方-4k+5,k属于N,若m属于A,判断m与B的关系.
答案:1 悬赏:50 手机版
解决时间 2021-07-20 01:09
- 提问者网友:临风不自傲
- 2021-07-19 00:50
最佳答案
- 五星知识达人网友:廢物販賣機
- 2021-07-19 00:59
1.因为m属于A,则m是A的子集
2.在经过变换A形式,将A变成B,其中n+2为k;
3.因为n属于N,所以n+2也属于N;
4.因为n属于0、1、2、3……,则n+2属于2、3、4、5……;
5.所以B是A的真子集;
6.所以m不一定属于B
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯