设偶函数f(x)对任意x∈R都有f(x+6)=f(x)+f(3),且当x∈(-3,-2)时,f(x)=5x,则f(201.2)=________.
答案:2 悬赏:80 手机版
解决时间 2021-04-10 21:48
- 提问者网友:相思似海深
- 2021-04-09 21:10
设偶函数f(x)对任意x∈R都有f(x+6)=f(x)+f(3),且当x∈(-3,-2)时,f(x)=5x,则f(201.2)=________.
最佳答案
- 五星知识达人网友:风格不统一
- 2021-04-09 22:02
-14解析分析:由f(x+6)=f(x)+f(3),利用赋值可求f(3)=0,,由f(x+6)=(x)可求函数的周期为6,从而可求解答:由函数f(x)为偶函数可得,f(-3)=f(3)
∵f(x+6)=f(x)+f(3),
令x=-3可得,f(3)=f(-3)+f(3)=2f(3)
∴f(3)=0
∴f(x+6)=f(x)+f(3)=f(x)即f(x+6)=f(x)
∴f(201.2)=f(6×33+3.2)=f(3.2)=f(-2.8)=5×(-2.8)=-14
故
∵f(x+6)=f(x)+f(3),
令x=-3可得,f(3)=f(-3)+f(3)=2f(3)
∴f(3)=0
∴f(x+6)=f(x)+f(3)=f(x)即f(x+6)=f(x)
∴f(201.2)=f(6×33+3.2)=f(3.2)=f(-2.8)=5×(-2.8)=-14
故
全部回答
- 1楼网友:不想翻身的咸鱼
- 2021-04-09 23:26
好好学习下
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯