谁能证明第n个素数小于n^2。
答案:2 悬赏:0 手机版
解决时间 2021-03-07 07:35
- 提问者网友:谁的错
- 2021-03-06 20:56
谁能证明第n个素数小于n^2。
最佳答案
- 五星知识达人网友:醉吻情书
- 2021-03-06 21:07
用数学归纳法,n=1时显然成立
设n=x-1时成立,即第x-1个素数小于(x-1)^2
则n=x时,也成立(即第x个素数,小于x^2),这是因为
(x-1)^2,(x-1)^2+1,(x-1)^2+2,。。。,(x-1)^2+2x-2
中必有一个素数
即第x-1个素数的下一个素数,即第x个素数,必然小于等于(x-1)^2+2x-2
=(x-1+1)^2-1
设n=x-1时成立,即第x-1个素数小于(x-1)^2
则n=x时,也成立(即第x个素数,小于x^2),这是因为
(x-1)^2,(x-1)^2+1,(x-1)^2+2,。。。,(x-1)^2+2x-2
中必有一个素数
即第x-1个素数的下一个素数,即第x个素数,必然小于等于(x-1)^2+2x-2
=(x-1+1)^2-1
全部回答
- 1楼网友:爱难随人意
- 2021-03-06 22:45
在n大于1的情况下,n²当然大于n。
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯