∫secx dx=?
答案:3 悬赏:40 手机版
解决时间 2021-03-01 14:59
- 提问者网友:回忆在搜索
- 2021-03-01 09:25
∫secx dx=?
最佳答案
- 五星知识达人网友:鱼芗
- 2021-03-01 11:00
=(1/2)ln│(1+sinx)/(1-sinx)│+C这一步必须要绝对值保证里面为正,而同时乘以一个(1+sinx)上面是个平方绝对为正,下面sin²x<=1也能保证大于0所以就不需要绝对值符号了,反正就是能保证为正就不用加了
全部回答
- 1楼网友:野味小生
- 2021-03-01 13:06
这不用往下化了
微积分公式就到此了
正割的积分就这。
你不用再通分了
微积分公式就到此了
正割的积分就这。
你不用再通分了
- 2楼网友:逃夭
- 2021-03-01 12:06
∫secxdx
=∫sec²x/secxdx
=∫cosx/cos²xdx
=∫1/cos²xdsinx
=∫1/(1-sin²x)dsinx
=-∫1/(sinx+1)(sinx-1)dsinx
=-∫[1/(sinx-1)-1/(sinx+1)]/2dsinx
=-[∫1/(sinx-1)dsinx-∫1/(sinx+1)dsinx]/2
=[∫1/(sinx+1)d(sinx+1)-∫1/(sinx-1)d(sinx-1)]/2
=(ln|sinx+1|-ln|sinx-1|)/2+C
=ln√|(sinx+1)/(sinx-1)|+C
=ln√|(sinx+1)²/(sinx+1)(sinx-1)|+C
=ln√|(sinx+1)²/(sin²x-1)|+C
=ln√|-(sinx+1)²/cos²x|+C
=ln|(sinx+1)/cosx|+C
=ln|tanx+1/cosx|+C
=ln|secx+tanx|+C
=∫sec²x/secxdx
=∫cosx/cos²xdx
=∫1/cos²xdsinx
=∫1/(1-sin²x)dsinx
=-∫1/(sinx+1)(sinx-1)dsinx
=-∫[1/(sinx-1)-1/(sinx+1)]/2dsinx
=-[∫1/(sinx-1)dsinx-∫1/(sinx+1)dsinx]/2
=[∫1/(sinx+1)d(sinx+1)-∫1/(sinx-1)d(sinx-1)]/2
=(ln|sinx+1|-ln|sinx-1|)/2+C
=ln√|(sinx+1)/(sinx-1)|+C
=ln√|(sinx+1)²/(sinx+1)(sinx-1)|+C
=ln√|(sinx+1)²/(sin²x-1)|+C
=ln√|-(sinx+1)²/cos²x|+C
=ln|(sinx+1)/cosx|+C
=ln|tanx+1/cosx|+C
=ln|secx+tanx|+C
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯