定义在R上的函数y=f(x),f(0)不等于0,当x>0时,f(x)>1,且对任意的a,b属于R,f(a+b)=f(a)f(b).
(1),求证,f(0)=1;(2),求证,对任意的x属于R,恒有f(x)>0;(3),证明:f(x)是R上的增函数;(4),若f(x)*f(2x-x平方)>1,求x
定义在R上的函数y=f(x),f(0)不等于0,当x>0时,f(x)>1,且对任意的a,b属于R,f(a+b)=f(a)
答案:1 悬赏:60 手机版
解决时间 2021-04-04 14:23
- 提问者网友:临风不自傲
- 2021-04-03 19:17
最佳答案
- 五星知识达人网友:山河有幸埋战骨
- 2021-04-03 19:25
1.因为f(a+b)=f(a)f(b),令式中a=b=0得:f(0)=f(0)*f(0),因f(0)不等于0,所以等式两同时消去f(0),得:f(0)=1.
2.令f(a+b)=f(a)f(b)中a=b=x/2,于是f(x)=f(0.5x)*f(0.5x)=(f(0.5x))^2>=0.因为当式中a=x,b=-x,得:f(0)=f(x)*f(-x),因为f(0)不等于0,所以对于任意的f(x)和f(-x)都有f(x)不等于0,所以f(x)>0.
3.设x1>x2,因为对任意的x属于R,恒有f(x)>0,所以f(x1)/f(x2)=f(x1+x2-x2)/f(x2)=(f(x1-x2)*f(x2))/f(x2),分子分母同时约去f(x2),得:f(x1)/f(x2)=f(x1-x2),因为x1>x2,所以x1-x2>0,所以f(x1-x2)>1,所以f(x1)/f(x2)>1,所以f(x1)>f(x2),所以f(x)是R上的增函数.
4.f(x)*f(2x-x平方)=f(3x-x^2)>1,因为x>0时,f(x)>1,f(x)又为R上的增函数,所以,只有当3x-x^2>0时,才会有f(x)*f(2x-x平方)>1,此时,0
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯