永发信息网

设λ1,λ2为方阵A的两个不同的特征值,α1,α2为A相应于λ1的两个线性无关的特征向量,α3,α4为A相应

答案:1  悬赏:80  手机版
解决时间 2021-04-08 06:31
  • 提问者网友:温旧梦泪无声
  • 2021-04-07 11:04
设λ1,λ2为方阵A的两个不同的特征值,α1,α2为A相应于λ1的两个线性无关的特征向量,α3,α4为A相应
最佳答案
  • 五星知识达人网友:执傲
  • 2021-04-07 12:44
证明:由题意,Aα11α1,Aα21α2,Aα32α3,Aα42α4
设k1α1+k2α2+k3α3+k4α4=0,则
用矩阵A左乘上式两端,得
k11+k22+k33+k44=0
∴k1λ1α1+k2λ1α2+k3λ2α3+k4λ4α4=0…(*)
而A(k1α1+k2α2)=λ1(k1α1+k2α2),A(k3α3+k4α4)=λ2(k3α3+k4α4
即k1α1+k2α2是A相应于λ1的特征向量,k3α3+k4α4是A相应于λ2的特征向量
又不同特征值所对应的特征向量,是线性无关的
因此k1α1+k2α2和k3α3+k4α4是线性无关的
又由(*)得
λ1(k1α1+k2α2)+λ2(k3α3+k4α4)=0
且λ1,λ2为方阵A的两个不同的特征值
∴k1α1+k2α2=0
和k3α3+k4α4=0
而α1,α2为两个线性无关的特征向量,
α3,α4为两个线性无关的特征向量
∴k1=k2=k3=k4=0
∴向量组α1,α2,α3,α4线性无关.
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯