已知集合A={x|x的平方-3x+2=0}.B={x|x的平方+2(a+1)x+a的平方-5=0} (1)若A交B={2},求实数a的值
(2)若A并B=A,求实数a的取值范围
已知集合A={x|x的平方-3x+2=0}.B={x|x的平方+2(a+1)x+a的平方-5=0} (1)若A交B={2
答案:1 悬赏:30 手机版
解决时间 2021-07-26 17:24
- 提问者网友:遁入空寂
- 2021-07-25 17:01
最佳答案
- 五星知识达人网友:独钓一江月
- 2021-07-25 17:29
A:x²-3x+2=0,解之,x1=1,x2=2.可知A={1,2};
B:x²+2(a+1)x+a²-5=0;
(1)若A∩B={2},将x=2带入B中,得:a²+4a+3=0,解之a1=-1,a2=-3;
将a=-1带入x²+2(a+1)x+a²-5=0,得:x²-4=0,x1=2,x2=-2,符合要求;
将a=-3带入x²+2(a+1)x+a²-5=0,得:x²-4x+4=0,解之,x1=x2=2,符合要求;
答:实数a的值为-1或-3.
(2)若A∪B=A,则B包含于{1,2}.
1、B={∅},则求x²+2(a+1)x+a²-5=0无解的范围,得a<-3.
2、B={1},则x²+2(a+1)x+a²-5=0→x²-2x+1=0,即:2(a+1)=-2,a²-5=1,无解.
3、B={2},则x²+2(a+1)x+a²-5=0→x²-4x+4=0,即:2(a+1)=-2,a²-5=1,a=-3.
4、B-{1,2},则x²+2(a+1)x+a²-5=0→x²-3x+2=0,即:2(a+1)=-3,a²-5=2,无解.
答:a的取值范围为:a≤-3.
再问: 为什么“x²+2(a+1)x+a²-5=0→x²-2x+1=0”(第二问的第二点)
再答: 只有这样才能保证集合里只有1这一个元素,如果还有别的解,那么并集就不可能=A了。
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯