如图,已知抛物线经过点A(-2,0),抛物线的顶点为D,过O作射线OM∥AD.过顶点D平行于x轴的直线交射线OM于点C,B在x轴正半轴上,连接BC.
(1)求该抛物线的解析式;
(2)若动点P从点O出发,以每秒l个长度单位的速度沿射线OM运动,设点P运动的时间为t(s).问:当t为何值时,四边形DAOP分别为平行四边形?直角梯形?等腰梯形?
(3)若OC=OB,动点P和动点Q分别从点O和点B同时出发,分别以每秒l个长度单位和2个长度单位的速度沿OC和BO运动,当其中一个点停止运动时另一个点也随之停止运动设它们运动的时间为t(s),连接PQ,当t为何值时,四边形BCPQ的面积最小?并求出最小值.
(4)在(3)中当t为何值时,以O,P,Q为顶点的三角形与△OAD相似?(直接写出
如图,已知抛物线经过点A(-2,0),抛物线的顶点为D,过O作射线OM∥AD.过顶点D平行于x轴的直线交射线OM于点C,B在x轴正半轴上,连接BC.(1)求该抛物线的
答案:2 悬赏:0 手机版
解决时间 2021-04-16 05:32
- 提问者网友:我的未来我做主
- 2021-04-15 13:40
最佳答案
- 五星知识达人网友:空山清雨
- 2020-07-05 03:04
)
全部回答
- 1楼网友:神也偏爱
- 2020-11-15 00:47
这个问题的回答的对
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯