永发信息网

如图(1)已知在△ABC中,AB=AC,P是△ABC内任意一点将AP绕点A顺时针旋转到AQ,使∠QAP=∠BAC,连接BQ、CP,则BQ=CP,请证明;若将点P移到等

答案:2  悬赏:10  手机版
解决时间 2021-12-29 15:32
  • 提问者网友:沉默的哀伤
  • 2021-12-28 16:52
如图(1)已知在△ABC中,AB=AC,P是△ABC内任意一点将AP绕点A顺时针旋转到AQ,使∠QAP=∠BAC,连接BQ、CP,则BQ=CP,请证明;
若将点P移到等腰ABC之外,原题中其它条件不变,上面的结论是否成立?请说明理由.
最佳答案
  • 五星知识达人网友:蕴藏春秋
  • 2021-12-28 17:50
(1)证明:∵∠QAP=∠BAC,
∴∠QAB=∠PAC,
∵AP=AQ,AB=AC,
∴△QAB≌△PAC(SAS),
∴BQ=CP.

(2)成立;
证明:∵∠QAP=∠BAC,
∴∠QAB=∠PAC,
∵AP=AQ,AB=AC,
∴△QAB≌△PAC(SAS),
∴BQ=CP.解析分析:根据旋转的性质及已知,利用SAS判定△QAB≌△PAC,从而得到BQ=CP;同理,第二问也可证明成立.点评:此题主要考查学生以旋转的性质,全等三角形的判定及等腰三角形的性质的综合运用能力.
全部回答
  • 1楼网友:患得患失的劫
  • 2021-12-28 18:14
就是这个解释
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯