永发信息网

z*z的共轭复数+2i*z的共轭复数=3+ai,求z,用a表示

答案:2  悬赏:0  手机版
解决时间 2021-11-30 09:02
  • 提问者网友:佞臣
  • 2021-11-29 12:28
z*z的共轭复数+2i*z的共轭复数=3+ai,求z,用a表示
最佳答案
  • 五星知识达人网友:北方的南先生
  • 2021-11-29 13:19
设z=x+yi

z*z=(x+yi)²=x²-y²+2xyi

z*z 的共轭复数为 x²-y²-2xyi

z 的共轭复数为x-yi 代入

x²-y²-2xyi+2i(x-yi)=x²-y²-2xyi+2xi+2y
=x²-y²+2y+2x(1-y)i
=3+ai

则有

x²-y²+2y=3
2x(1-y)=a

x =

√(4+2√(4+a²))/2
-√(4+2√(4+a²))/2
√(4-2√(4+a²))/2
-√(4-2√(4+a²))/2

y =

(a+2*(4+2*(4+a^2)^(1/2))^(1/2)-1/4*(4+2*(4+a^2)^(1/2))^(3/2))/a
(a-2*(4+2*(4+a^2)^(1/2))^(1/2)+1/4*(4+2*(4+a^2)^(1/2))^(3/2))/a
(a+2*(4-2*(4+a^2)^(1/2))^(1/2)-1/4*(4-2*(4+a^2)^(1/2))^(3/2))/a
(a-2*(4-2*(4+a^2)^(1/2))^(1/2)+1/4*(4-2*(4+a^2)^(1/2))^(3/2))/a
全部回答
  • 1楼网友:玩世
  • 2021-11-29 14:01
y =

(a+2*(4+2*(4+a^2)^(1/2))^(1/2)-1/4*(4+2*(4+a^2)^(1/2))^(3/2))/a
(a-2*(4+2*(4+a^2)^(1/2))^(1/2)+1/4*(4+2*(4+a^2)^(1/2))^(3/2))/a
(a+2*(4-2*(4+a^2)^(1/2))^(1/2)-1/4*(4-2*(4+a^2)^(1/2))^(3/2))/a
(a-2*(4-2*(4+a^2)^(1/2))^(1/2)+1/4*(4-2*(4+a^2)^(1/2))^(3/2))/a
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯