永发信息网

零点定理 说的是解题还是什么

答案:1  悬赏:0  手机版
解决时间 2021-11-26 03:04
  • 提问者网友:寂寞梧桐
  • 2021-11-26 00:02
零点定理 说的是解题还是什么
最佳答案
  • 五星知识达人网友:罪歌
  • 2021-11-26 01:23
在一个“奥威尔式”(Orwellian)的受严格统治而失去人性的社会,国家的上层建筑为了监视人民控制思想,将眼线散布在生活、工作场所,甚至网络上。克里斯托弗·瓦尔兹饰演一名性格古怪的计算机天才Qohen Leth,然而生活本来按部就班的他注意力却渐渐为一系列“虚拟性骚扰”所分散,并且“领导人”叛逆的儿子也让他头疼不已。为了搞清楚这些问题,智慧超群的他开始实施一个神秘的计划……
设函数f(x)在闭区间[a,b]上连续,且f(a)与 f(b)异号(即f(a)× f(b)<0),那么在开区间(a,b)内至少有函数f(x)的一个零点,即至少有一点ξ(a<ξ证明:不妨设f(a)<0,f(b)>0.令
E={x|f(x)<0,x∈[a,b]}.
由f(a)<0知E≠Φ,且b为E的一个上界,于是根据确界存在原理,抛物线存在ξ=supE∈[a,b].
下证f(ξ)=0(注意到f(a)≠0,f(b)≠0,故此时必有ξ∈(a,b).).事实上,
(i)若f(ξ)<0,则ξ∈[a,b).由函数连续的局部保号性知
存在δ>0,对x1∈(ξ,ξ+δ):f(x)<0→存在x1∈E:x1>supE,
这与supE为E的上界矛盾;
(ii)若f(ξ)>0,则ξ∈(a,b].仍由函数连续的局部保号性知
存在δ>0,对x1∈(ξ-δ,ξ):f(x)>0→存在x1为E的一个上界,且x1<ξ,
这又与supE为E的最小上界矛盾。
综合(i)(ii),即推得f(ξ)=0。
我们还可以利用闭区间套定理来证明零点定理。
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯