1.若根号下(1+cosx)/(1-cosx)-根号下(1-cosx)/(1+cosx)=-2/tanx 求x的取值范围
2.求值sin-1740·cos1470+cos-660·sin750·tan405
化简(根号下1-2·sin20·cos20)/【sin20-根号下1-(sin20的平方)】
1.若根号下(1+cosx)/(1-cosx)-根号下(1-cosx)/(1+cosx)=-2/tanx 求x的取值范围
2.求值sin-1740·cos1470+cos-660·sin750·tan405
化简(根号下1-2·sin20·cos20)/【sin20-根号下1-(sin20的平方)】
解:
1.
设A=√[(1+cosx)/(1-cosx)]
B=√[(1-cosx)/(1+cosx)]
由于:
A=√{[sin^2(x/2)+cos^2(x/2)+cos^2(x/2)-sin^2(x/2)]/[1-cosx]}
(将1变为正余弦平方的形式以及cosx的二倍角代换)
=√{[2cos^2(x/2)]/[1-(1-2sin^2(x/2))]} (cosx的二倍角代换)
=√{[2cos^2(x/2)]/[2sin^2(x/2)]}
=√[cos^2(x/2)]/[sin^2(x/2)]
=|cos(x/2)/sin(x/2)|
同理B=|sin(x/2)/cos(x/2)|
又:-2/tanx
=-2/(sinx/cosx)=(-2cosx)/(sinx)
=(-2cosx)/[2sin(x/2)cos(x/2)]
=[-cosx]/[sin(x/2)cos(x/2)]
=-[cos^(x/2)-sin^2(x/2)]/[sin(x/2)cos(x/2)]
=-{[cos(x/2)]/[sin(x/2)]-[sin(x/2)]/[cos(x/2)]}
=[sin(x/2)]/[cos(x/2)]-[cos(x/2)/sin(x/2)]
=A-B (题中已知)
=|cos(x/2)/sin(x/2)|-|sin(x/2)/cos(x/2)|
则有:cos(x/2)/sin(x/2)<0
故:cos(x/2)sin(x/2)<0
2sin(x/2)cos(x/2)<0
sinx<0
则:x的范围:2kπ+π<x<(2k+1)π
2.
由于:
sin(-1740)=sin(-5*360+60)=sin60=√3/2
cos(1470)=cos(5*360-30)=cos30=√3/2
cos(-660)=cos(-360*2+60)=cos60=1/2
sin(750)=sin(360*2+30)=sin30=1/2
tan(405)=tan(360+45)=tan45=1
则:
原式=(√3/2)^2+(1/2)^2*1=3/4+1/4=1
3.
√[1-2sin20cos20]/{sin20-√[1-(sin20)^2]}
=√[sin^2(20)+cos^2(20)-2sin20cos20]/{sin20-√[(cos20)^2]}
=√[(sin20-cos20)^2]/[sin20-cos20]
由于:0<20度<45度
则:cos20>sin20
则:原式
=[cos20-sin20]/[sin20-cos20]
=-1