A、观察下列图形的变化过程,解答以下问题:
如图,在△ABC中,D为BC边上的一动点(D点不与B、C两点重合).DE∥AC交AB于E点,DF∥AB交AC于F点.
(1)试探索AD满足什么条件时,四边形AEDF为菱形,并说明理由;
(2)在(1)的条件下,△ABC满足什么条件时,四边形AEDF为正方形.为什么?
B、已知:如图,在△ABC中,D是BC边上的一点,连接AD,取AD的中点E,过点A作BC的平行线与CE的延长线交于点F,连接DF.
(1)求证:AF=DC;
(2)若AD=CF,试判断四边形AFDC是什么样的四边形?并证明你的结论.
A、观察下列图形的变化过程,解答以下问题:如图,在△ABC中,D为BC边上的一动点(D点不与B、C两点重合).DE∥AC交AB于E点,DF∥AB交AC于F点.(1)试
答案:2 悬赏:30 手机版
解决时间 2021-03-23 08:41
- 提问者网友:未信
- 2021-03-22 08:09
最佳答案
- 五星知识达人网友:酒醒三更
- 2021-03-22 09:07
A、解:(1)当AD平分∠BAC时,四边形AEDF为菱形.
∵AE∥DF,DE∥AF,
∴四边形AEDF为平行四边形,
∵AD平分∠BAC,
∴∠EAD=∠FAD
又∵∠FAD=∠ADE,
∴∠DAE=∠ADE,
∴AE=DE,
∴平行四边形AEDF为菱形;
(2)当∠BAC=90°时,菱形AEDF是正方形.因为有一个角是直角的菱形是正方形.
B、(1)证明:∵AF∥DC,
∴∠AFE=∠DCE,
又∵∠AEF=∠DEC(对顶角相等),AE=DE(E为AD的中点),
∴△AEF≌△DEC(AAS),
∴AF=DC;
(2)矩形.理由:
由(1),有AF=DC且AF∥DC,
∴四边形AFDC是平行四边形,
又∵AD=CF,
∴四边形AFDC是矩形(对角线相等的平行四边形是矩形).解析分析:A、(1)当AD平分∠BAC时,四边形AEDF为菱形.可先证明四边形AEDF为平行四边形,再证明一组邻边相等,即可证明四边形AEDF为菱形;
(2)当∠BAC=90°时,菱形AEDF是正方形.因为有一个角是直角的菱形是正方形.
B、(1)因为AF∥DC,E为AD的中点,即可根据AAS证明△AEF≌△DEC,故有AF=DC;
(2)由(1)知,AF=DC且AF∥DC,可得四边形AFDC是平行四边形,又因为AD=CF,故可根据对角线相等的平行四边形是矩形进行判定.点评:本题考查了菱形和正方形的判定以及矩形的判定和全等三角形的判定与性质.要熟知这些判定定理才会灵活运用,根据性质才能得到需要的相等关系.
∵AE∥DF,DE∥AF,
∴四边形AEDF为平行四边形,
∵AD平分∠BAC,
∴∠EAD=∠FAD
又∵∠FAD=∠ADE,
∴∠DAE=∠ADE,
∴AE=DE,
∴平行四边形AEDF为菱形;
(2)当∠BAC=90°时,菱形AEDF是正方形.因为有一个角是直角的菱形是正方形.
B、(1)证明:∵AF∥DC,
∴∠AFE=∠DCE,
又∵∠AEF=∠DEC(对顶角相等),AE=DE(E为AD的中点),
∴△AEF≌△DEC(AAS),
∴AF=DC;
(2)矩形.理由:
由(1),有AF=DC且AF∥DC,
∴四边形AFDC是平行四边形,
又∵AD=CF,
∴四边形AFDC是矩形(对角线相等的平行四边形是矩形).解析分析:A、(1)当AD平分∠BAC时,四边形AEDF为菱形.可先证明四边形AEDF为平行四边形,再证明一组邻边相等,即可证明四边形AEDF为菱形;
(2)当∠BAC=90°时,菱形AEDF是正方形.因为有一个角是直角的菱形是正方形.
B、(1)因为AF∥DC,E为AD的中点,即可根据AAS证明△AEF≌△DEC,故有AF=DC;
(2)由(1)知,AF=DC且AF∥DC,可得四边形AFDC是平行四边形,又因为AD=CF,故可根据对角线相等的平行四边形是矩形进行判定.点评:本题考查了菱形和正方形的判定以及矩形的判定和全等三角形的判定与性质.要熟知这些判定定理才会灵活运用,根据性质才能得到需要的相等关系.
全部回答
- 1楼网友:不想翻身的咸鱼
- 2021-03-22 10:00
正好我需要
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯