以集合U={a,b,c,d}的子集中选出4个不同的子集,需同时满足以下两个条件:(1)?、U都要选出;(2)对选出的任意两个子集A和B,必有A?B或B?A,那么共有_
答案:2 悬赏:20 手机版
解决时间 2021-04-10 01:58
- 提问者网友:niaiwoma
- 2021-04-09 03:32
以集合U={a,b,c,d}的子集中选出4个不同的子集,需同时满足以下两个条件:(1)?、U都要选出;(2)对选出的任意两个子集A和B,必有A?B或B?A,那么共有________种不同的选法.
最佳答案
- 五星知识达人网友:思契十里
- 2021-04-09 04:02
解:因为U,Φ都要选出
而所有任意两个子集的组合必须有包含关系
故各个子集所包含的元素个数必须依次递增
而又必须包含空集和全集
所以需要选择的子集有两个
设第二个子集的元素个数为1
有(a)(b)(c)(d)四种选法
(1)第三个子集元素个数为2
当第二个子集为(a)时
第三个子集的2个元素中必须包含a
剩下的一个从bcd中选取
有三种选法
所以这种子集的选取方法共有4×3=12种
(2)第三个子集中包含3个元素
同理三个元素必须有一个与第二个子集中的元素相同
共有4×3=12种
(3)第二个子集有两个元素
有6种取法
第三个子集必须有3个元素且必须包含前面一个子集的两个元素
有两种取法
所以这种方法有6×2=12种
综上一共有12+12+12=36种
故
而所有任意两个子集的组合必须有包含关系
故各个子集所包含的元素个数必须依次递增
而又必须包含空集和全集
所以需要选择的子集有两个
设第二个子集的元素个数为1
有(a)(b)(c)(d)四种选法
(1)第三个子集元素个数为2
当第二个子集为(a)时
第三个子集的2个元素中必须包含a
剩下的一个从bcd中选取
有三种选法
所以这种子集的选取方法共有4×3=12种
(2)第三个子集中包含3个元素
同理三个元素必须有一个与第二个子集中的元素相同
共有4×3=12种
(3)第二个子集有两个元素
有6种取法
第三个子集必须有3个元素且必须包含前面一个子集的两个元素
有两种取法
所以这种方法有6×2=12种
综上一共有12+12+12=36种
故
全部回答
- 1楼网友:往事埋风中
- 2021-04-09 05:35
哦,回答的不错
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯