设log以ab为底的a的对数=p,用p表示log以ab为底的根号(a/b)的对数=
答案:3 悬赏:40 手机版
解决时间 2021-02-06 23:18
- 提问者网友:沉默菋噵
- 2021-02-06 11:38
设log以ab为底的a的对数=p,用p表示log以ab为底的根号(a/b)的对数=
最佳答案
- 五星知识达人网友:一袍清酒付
- 2021-02-06 13:17
对已知条件log(ab)(a)=p,用10换底得
[lg(a)]/[lg(ab)]=p
[lg(a)]/[lg(a)+lg(b)]=p
解得lg(b)=[(1-p)/p]lg(a)
对所求的式子也用10换底得
log(ab)[√(a/b)]
=[lg√(a/b)]/[lg(ab)]
=(1/2)[lg(a/b)]/[lg(ab)]
=(1/2)[lga-lgb]/[lga+lgb]
=(1/2){lga-[(1-p)/p]lga}/{lga+[(1-p)/p]lga}
=(1/2)[1-(1-p)/p]/[1+(1-p)/p]
=p-(1/2)
[lg(a)]/[lg(ab)]=p
[lg(a)]/[lg(a)+lg(b)]=p
解得lg(b)=[(1-p)/p]lg(a)
对所求的式子也用10换底得
log(ab)[√(a/b)]
=[lg√(a/b)]/[lg(ab)]
=(1/2)[lg(a/b)]/[lg(ab)]
=(1/2)[lga-lgb]/[lga+lgb]
=(1/2){lga-[(1-p)/p]lga}/{lga+[(1-p)/p]lga}
=(1/2)[1-(1-p)/p]/[1+(1-p)/p]
=p-(1/2)
全部回答
- 1楼网友:老鼠爱大米
- 2021-02-06 14:15
p-1/2
- 2楼网友:三千妖杀
- 2021-02-06 13:35
logab(a)=p,则
(ab)^p=a
b^p=a^(1-p)
logab(根a/b)
=logab(a/b)^(1/2)
=1/2logab(a/b)
=1/2(logab(a)+logab(b))
=1/2(p+1/plogab(b^p))
=1/2(p+1/plogab(a^(1-p))
=1/2(p+(1-p)/plogab(a))
=1/2(p+(1-p)/p*p)
=1/2(p+1-p)
=1/2
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯