已知:如图所示,在△ABC中,AB=AC,E在CA延长线上,AE=AF,AD是高,试判断EF与BC的位置关系,并说明理由.
答案:2 悬赏:10 手机版
解决时间 2021-01-04 04:15
- 提问者网友:溺爱和你
- 2021-01-03 10:08
已知:如图所示,在△ABC中,AB=AC,E在CA延长线上,AE=AF,AD是高,试判断EF与BC的位置关系,并说明理由.
最佳答案
- 五星知识达人网友:山有枢
- 2021-01-03 11:29
解:垂直.
理由:∵在△ABC中,AB=AC,AD是高,
∴∠BAD=∠CAD,
∵AE=AF,
∴∠E=∠EFA,
∵∠BAC=∠E+∠EFA=2∠EFA,
∴∠EFA=∠BAD,
∴EF∥AD,
∵AD⊥BC,
∴EF⊥BC.
故EF与BC的位置关系为:垂直.解析分析:根据等腰三角形三线合一的性质可得到∠BAD=∠CAD,再根据三角形外角的性质可推出∠EFA=∠BAD,再根据内错角相等两直线平行得到EF∥AD,已知AD⊥BC,则EF与BC的关系为垂直.点评:此题主要考查等腰三角形的性质,平行线的判定与性质及三角形外角的性质的综合运用.
理由:∵在△ABC中,AB=AC,AD是高,
∴∠BAD=∠CAD,
∵AE=AF,
∴∠E=∠EFA,
∵∠BAC=∠E+∠EFA=2∠EFA,
∴∠EFA=∠BAD,
∴EF∥AD,
∵AD⊥BC,
∴EF⊥BC.
故EF与BC的位置关系为:垂直.解析分析:根据等腰三角形三线合一的性质可得到∠BAD=∠CAD,再根据三角形外角的性质可推出∠EFA=∠BAD,再根据内错角相等两直线平行得到EF∥AD,已知AD⊥BC,则EF与BC的关系为垂直.点评:此题主要考查等腰三角形的性质,平行线的判定与性质及三角形外角的性质的综合运用.
全部回答
- 1楼网友:独行浪子会拥风
- 2021-01-03 12:27
谢谢回答!!!
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯